# A. W.A. MODEL PF10-11B-12A 

Manufacturer's Setting of Adjustments.
The receiver is tested by the manufacturer with precision instruments and all adjusting screws, except the erial trimmer, are sealed. Re-alignment should be neces or replaced or when it is found that the seals over the djusting screws have been broken.

It is especially important that adjustments should not be altered unless the correct instruments, listed below, are used.

For all alignment operations connect the "low" side of the signal generator to the receiver chassis and keep e generator output as low as possible to avoid a.g. action. Also, keep the volume control in the maximum clockwise position.

When the generator is connected to the aerial terminal use the dummy aerial as shown in the diagram.

Testing Instruments:
Signal Generator - Modulated 400 c.p.s. or Modulated Oscillator.
Dummy Aerial - See diagram.
Output Meter - 15 ohms impedence.
I.F. Alignment Tool No. 39462.


DUMMY AERIAL
A. GENERAL. ALIGNMENT TABLE

| $\begin{aligned} & \text { ALIGN. } \\ & \text { ORDER } \end{aligned}$ | CONNECT GENERATOR TO: | TUNE GENERATOR TO: | TUNE RECEIVER TO: | ADJUST FOR MAX. PEAK OUTPUT: |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | Base of VT2* <br> Base of VT2* <br> Base of VT2* <br> Base of VT2* | $455 \mathrm{Kc} / \mathrm{s}$ <br> $455 \mathrm{Kc} / \mathrm{s}$ <br> $455 \mathrm{Kc} / \mathrm{s}$ <br> $455 \mathrm{Kc} / \mathrm{s}$ | H.F. Stop. <br> H.F. Stop. <br> H.F. Stop. <br> H.F. Stop. | TR3 Secondary Core TR3 Primary Core TR2 Secondary Core TR2 Primary Core |
| Repeat the above adjustments until maximum output is obtained. |  |  |  |  |
| 5 | Aerial Terminal Via Dummy Aerial | $\begin{aligned} & 1,620 \mathrm{Kc} / \mathrm{s} \\ & \text { (Accurate) } \end{aligned}$ | H.F. Limit | Osc. Trimmer (C11) |
| 6 | Aerial Terminal Via Dummy Aerial | 1,500 Kc/s | 1,500 Kc/s | R.F. Trimmer (C7) |
| 7 | Aerial Terminal Via Dummy Aerial | 1,500 Kc/s | 1,500 Kc/s | Aer. Trimmer (C1) |
| 8 | Aerial Terminal Via Dummy Aerial | $600 \mathrm{Kc} / \mathrm{s}$ | $600 \mathrm{Kc} / \mathrm{s}$ | Osc. Padder (L3) $\dagger$ |

Repeat adjustments $5,6,7$ and 8 until no further adjustment is possible.

* A $0.01 \mu \mathrm{~F}$ capacitor should be connected in series with the high side of the test instrument.
$\dagger$ Rock the tuning control back and forth through the signal.
B. CALIBRATION ALIGNMENT: With the receiver connected to an aerial the dial scale calibration may be checked and corrected if necessary. The pointer position may be altered on turning a screw driver in the slot provided at the rear end of the pointer.
C. TUNER ALIGNMENT: Adjustment of the tuning cores should not be made unless a coil has been replaced or it is suspected that the alignment has been interfered with, in which case carefully follow the procedure below
Adjust the tuner to the H.F. end stop and back all cores out of the coils as far as possible
. Adjust the tuner to the H.F. end stop and back all cores out of the coils as far as possible. output.
Tune the signal generator accurately to $600 \mathrm{Kc} / \mathrm{s}$ and the core
Adjust the oscillator, RF, and aerial cores for maximum output
Tune the signal generator to $1,620 \mathrm{Kc} / \mathrm{s}$ and tuner to H.F. end stop and re-adjust the oscillator trimmer for maximum

5. Tune the signal generator and tuner to $1,500 \mathrm{Kc} / \mathrm{s}$ and adjust the R.F. and aerial trimmers for maximum output.
6. Tune the signal generator and tuner to $1,500 \mathrm{Kc} / \mathrm{s}$ and adjust the
7. Repeat steps 3,4 and 5 until no further improvement is obtained.
8. Repeat steps 3, 4 and 5 until no further improvement is obtained. oscillator padder core to tune to $520 \mathrm{Kc} / \mathrm{s}$ and repeat steps 3,4 and 5 above until no further improvement is obtained. 8. Seal the tuning core studs.

## A59 A.W.A. MODEL PF10-11B-12A



All voltages shown are positive with respect to the board earth, and are measured with no signal input and volume maximum clockwise using a 20,000 ohm/volt meter.



