The receiver is tested by the manufacturer with precision instruments and all adjusting screws, except the aerial trimmer, are sealed. Re-alignment should be necessary only when components in tuned circuits are repaired or replaced, or when it is found that the seals over the adjusting screws have been broken.

It is especially important that adjustments should not be altered unless the correct instruments, listed below, are used.

For all alignment operations connect the "low" side of the signal generator to the receiver chassis and keep the generator output as low as possible to avoid a.g.c. action. Also, keep the volume control in the maximum clockwise position.

When the generator is connected to the aerial terminal, use the dummy aerial as shown in the diagram.

Testing Instruments:
Signal Generator - Modulated 400 c.p.s. or Modulated Oscillator.
Dummy Aerial - See diagram.
Output Meter - 15 ohms impedence.
I.F. Alignment Tool No. 39462.


DUMMY AERIAL

## GENERAL DESCRIPTION

Model MF4D is a six transistor manual permeability tuned superheterodyne car radio. (3 Star Model). Model PF5D is a six transistor press-button permeability tuned superheterodyne car radio. (3 Star Model). Modei MF20D is a six transistor manual permeability tuned superheterodyne car radio. (3 Star Model).

## ELECTRICAL AND MECMANMCAL SPECMFICATIONS

| Frequency Range | $525-1,620 \mathrm{Kc} / \mathrm{s}$ |
| :---: | :---: |
| Intermediate Frequency | $455 \mathrm{Kc} / \mathrm{s}$ |
| Battery Voltage | 12 Volts |
| Battery Polarity | Negative Earth |
| Battery Consumption | 0.8 Amps |

## Controls:

MF4D-Power/Volume, Tone, Tuning.
PF5D-Manual Tuning, Power/Volume, Tone. Press-button Tuning (Set of 5).
Loudspeaker 8" x $4^{\prime \prime}$
50263W
V.C. Impedance 15 ohms at 400 C.P.S.

Undistorted Power Output 2 Watts

Transistor and Diode Complement
AWV 2N1637 R.F. Amplifier.
AWV 2N1639 Converter.
AWV 2N1638 1st I.F. Amplifier.
AWV 2N408 Audio Amplifier.
AWV 2N6491 Output.
AWV 1N87A AGC.
AWV 1N87A Detector

## TWO SPEAKER OPERATION

It is essential that the load impedance be matched correctly to the transistor output stage as any reductio in the correct load of 15 ohms due to the connection of noth speaker in paranel with the existing one will esult in loss of power output and increased distortion. If a second speaker is desired, it can be connected as shown in fig. 1 utilising a fader control.
For this purpose a special kit, No. 36276; is available comprising a $7^{\prime \prime} \times 5^{\prime \prime} 15$ ohm speaker, baffle and fader control unit.


FIG. 1
A. GENERAL.

ALLGNMENT TABLE

| $\begin{aligned} & \text { ALIGN. } \\ & \text { ORDER } \end{aligned}$ | CONNECT GENERATOR TO: | $\begin{gathered} \text { TUNE GENERATOR } \\ \text { TO: } \end{gathered}$ | $\begin{aligned} & \text { TUNE RECEIVER } \\ & \text { TO: } \end{aligned}$ | ADJUST FOR MAX. PEAK OUTPUT: |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | Base of VT2* <br> Base of VT2* <br> Base of VT2* <br> Base of VT2* | $455 \mathrm{Kc} / \mathrm{s}$ <br> $455 \mathrm{Kc} / \mathrm{s}$ <br> $455 \mathrm{Kc} / \mathrm{s}$ <br> $455 \mathrm{Kc} / \mathrm{s}$ | H.F. Stop. <br> H.F. Stop. <br> H.F. Stop. <br> H.F. Stop. | TR3 Secondary Core TR3 Primary Core TR2 Secondary Core TR2 Primary Core |
| Repeat the above adjustments until maximum output is obtained. |  |  |  |  |
| 5 | Aerial Terminal Via Dummy Aerial | $1,620 \mathrm{Kc} / \mathrm{s}$ (Accurate) | H.F. Limit | Osc. Trimmer (C11) |
| 6 | Aerial Terminal Via Dummy Aerial | $1,500 \mathrm{Kc} / \mathrm{s}$ | $1,500 \mathrm{Kc} / \mathrm{s}$ | R.F. Trimmer (C7) |
| 7 | Aerial Terminal | 1,500 Kc/s | $1,500 \mathrm{Kc} / \mathrm{s}$ | Aer. Trimmer (C1) |
| 8 | Via Dummy Aerial Aerial Terminal | $600 \mathrm{Kc} / \mathrm{s}$ | $600 \mathrm{Kc} / \mathrm{s}$ | Osc. Padder (L3) $\dagger$ |

Repeat adjustments 5, 6, 7 and 8 until no further adjustment is possible.

* A $0.01 \mu \mathrm{~F}$ capacitor should be connected in series with the high side of the test instrument.
$\dagger$ Rock the tuning control back and forth through the signal.
B. CALIBRATION ALIGNMENT:

MF4D, MF20D. With the receiver connected to an aerial, the dial scale calibration may be checked and corrected if necessary. The pointer may be moved relative to the dial scale by sliding it along the dial cord
PF5D. The pointer position may be altered by turning a screwdriver in the slot provided at the rear end of the pointer
C. TUNER ALIGNMENT: Adjustment of the tuner cores should not be made unless a coil has been replaced or it is suspected that the alignment has been interfered with, in which case carefully follow the procedure below.

1. Adjust the tuner to the H.F. end stop and back all cores out of the coils as far as possible.
2. Tune the signal generator accurately to $1,620 \mathrm{Kc} / \mathrm{s}$ and adjust the oscillator, R.F. and aerial trimmers for maximum
3. Tune the signal generator accurately to $600 \mathrm{Kc} / \mathrm{s}$ and the core carriage to a point, $0.680^{\prime \prime}$. from the H.F. end stop. Adjust the oscillator, R.F. and aerial cores for maximum output.
4. Tune the signal generator to 1620 and tuner to H.F end stop and re-adjust the oscillator trimmer for maximum output
5. Tune the signal generator and tuner to $1,500 \mathrm{Kc} / \mathrm{s}$ and adjust the R.F. and aerial trimmers for maximum output.
6. Repeat steps 3,4 and 5 until no further improvement is obtained.
7. Repeat she 1 F , end frequency with the carriage fully in This should be $520+5 \mathrm{Kc} / \mathrm{s}$. If necessary adjust the . oscillator padder core to tune to $520 \mathrm{Kc} / \mathrm{s}$ and repeat steps 3,4 and 5 above until no further improvement is obtained.
8. Seal the tuning core studs.


## A.W.A. MODEL MF4D-PF5D



