

SPECIFICATIONS
Transistors....................... 2 SB $303 \times 1 \quad 2$ SB1 86×3
2 SB 22×3
more thar 1 W
at 10% distortion more than 700 mW

Speaker............................35/8' $(9 \mathrm{~cm})$ impedance 8 ohm	
Recording	. 300 feet (90 m).....length
Wow and flutterbetter than 0.4\% RMS	
Signal to Noise ratiobetter than -45 db	
Frequency response $\ldots \ldots \ldots \ldots \ldots .90 \mathrm{~Hz}$ to $10,000 \mathrm{~Hz}$ within7 db band	
Operating temperature.......... $0^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}$	
Batteries \qquad UM- 2×5 pcs. (C size cell $\times 5$) or AC 117 V	
Battery Life........................ more than 12 hours	
Dimensions	$.63 / 4^{\prime \prime}(\mathrm{W}) \times 9.15 / 16^{\prime \prime}(\mathrm{L}) \times 25 / 8^{\prime \prime}$
	$(170 \times 251 \times 66 \mathrm{~mm})$

DJUSTMENTS

(A) Adjusting Recording Bias

The following adjustments should be made after changing a recording/playback head, an erasing head a trap L-1 (Bias frequency) or the volume control variable resistor (VR-3).

1. Supply DC 7.5 V to the unit and set it for recording condition.
2. Connect both terminals of a vacuum tube volt meter (VTVM) with R4 (10 ohm) resistor in parallel as shown below. (See fig. 1)

Fig. 1
3. Adjust L-1 so as to fix the trap L-1 maximum pointer deflection.
4. Then insert the cassette and set the volume knob to conter, and tone control knob to maximum.
5. Connect an audio generator to the microphone terminal and record two electric signals (900 Hz and $9,000 \mathrm{~Hz}$) at -90 db input.
6. Connect an 8 ohm load resistor with the earphone terminal. Then play-back the signal recorded. Turn the volume knob VR (100 K ohm) clockwise when the play-back signal of 9 K Hz is stronger than that of 900 Hz . When the former signal output power is weaker than the latter, turn it counterclockwise. Repeat above adjustment so that the signal output power at 900 Hz is lower than that at 9000 Hz by 5 db .
7. Follow the steps from 1 to 6 when changing an erasing head, an RP head or a trap. When changing the VR, take the steps from 4 to 6.
(B) Adjusting the Meter

The following adjustment should be made after changing the meter or the volume control variable resistor (VR-4 B-100Kohm). Supply 5.5 V DC to the unit and set it for play-back condition. Adjust the VR-4 (B 100 K ohm) so that the pointer deflects as far ac the limit hetween the red and black zones.

(C) Adjusting the Mechanism

1. Position of Pinch Roller

The space between the pinch roller stopper and pinch roller arm must be $0.7-1.2 \mathrm{~mm}$ when the PLAY button is pressed down. If not, adjust the angle of the pinch roller stopper by bending

fig. 2

2. Pressing Force of Pinch Roller

When measuring the pressure of the pinch roller as shown in figure 2. the pressure of the pinch roller should be between 270 and 320 grams. If not, adjustment is possible by resetting the pinch roller spring into another hole.
3. Adjustment of the Flywheel Support Plate
When the space between the fiywheel hub and the receptacle on the support plate is either too narrow or too wide, adjust it to $0.15 \sim 0.4 \mathrm{~mm}$ by turning the screws on the side of the plate (See fig. 3)

4. Adjustment of the drive roller

Appropriate pressure of the drive roller against the take-up reel should be $70-105$ grams when the PLAY button is pressed. If not, adjustment is to be made by resetting the take-up pulley spring into another hole. (See fig. 4)

fig. 3
PARTS LIST

$\begin{aligned} & \hline \text { KEY } \\ & \text { NO. } \end{aligned}$	PARTS NO.	DESCRIPTION	Q'ty	$\begin{aligned} & \hline \mathrm{KEY} \\ & \mathrm{NO} . \end{aligned}$	PARTS NO.	DESCRIPTION	Q'ty
1	1410311900800	CHASSIS ASSY	1	36	1412851901300	SPRING TAKE UP PULLEY	1
2	1410161901400	BUTTON ASSY SELECT	1	37	1410551900200	IDLER ASSY	1
3	1410315900100	REINFORCE CHASSIS ASSY	1	38	1410731900300	BACE IDL.ER ASSY	1
4	1412371900200	BRACKET TRANS	1	39	1412382903600	FIX BATT TERMINAL SPRING	3
5	1412445903400	CUSHION MIC COMPARTMENT	1	40	1412851905100	SPRING BATTERY TERMINAL	3
6	1412435900800	INSULATOR FIBER AC SOCKET	1	41	1410382901300	BATTERY HOLDER ASSY	1
7	4235970340	AC SOCKET ASSY	1	42	1412361900800	BRACKET VOL	1
8	1410731901400	BASE SIIIDE ASSY	1	43	1412852900400	SPRING FIX CASSETTE	
9	1410572900200	FLYWHEEL BEARING ASSY	1	44	1412461900200	TUBE TEFLON	
10	1410731900200	SLIDE BASE ASSY ARM	1	45	1412445900800	SHEET METER	1
11	1410541900100	PINCH ROLLER ASSY	1	46	1412445902600	CUSHION METER	2
12	1412853900200	SPRING BALL	2	47	1412445902700	CUSHION SPEAKER	1
13	1412472900100	LUG	1	48	1412564900201	SQUARE DRIVING BELT	1
14	1412851901500	SPRING PINCH ROLLER	1	49	1412853901000	SPRING RECORD BUTTON	1
15	1412825900100	BALL	6	50	1412842900100	INTERLOCK LEVER	1
16	1412851906000	SPG SLIDE ARM BASE ACT	1	51	4527970090	MOTOR	1
17	1412851904500	SPRING RECORD PLAY HEAD	1	52	4222970140	CONTROL TONE	1
18	1412521900100	FLYWHEEL CAPSTAN	,	53	4222970030	CONTROL VOL	1
19	1410351900100	SUPPORT FLYWHEEL ASSY	1	54	4242970060	HEAD RECORD PLAY	1
20	1410531900100	REEL PLATE ASSY	1	55	4242970140	HEAD ERASE	1
21	1412536900400	CAP REEL PLATE	2	56	4151970050	SPEAKER	1
22	1412453900200	WASHER SPINDLE	2	57	4511970070	METER	1
23	1412713900200	BRAKE	1	58	4251970070	POWER TRANS	1
24	1412731900900	SIIDE ARM POWER SW	1	59	4231970010	SWITCH POWER	1
25	1412825900300	SPACER BRAKE	1	60	1412851901600	SPRING INTERLOCK	1
26	1412852900300	SPRING BRAKE	1	61	1412376900700	SPACER HEAD	1
27	1412851905900	SPRING SLIDE ARM POWER SW	1	62		SCREW ($2 \mathrm{~mm} \times 5 \mathrm{~mm}$ Pan head,	12
28	1410551900100	TAKE UP PULLEY ASSY	1			Phil.)	
29	1412851901700	SPRING IDLER BASE	1	63		SCREW ($2 \mathrm{~mm} \times 4 \mathrm{~mm}$ Flat head,	7
30	1412825900400	ROLLER IDLER BASE	2			Phil.)	
31	1410551900700	REWIND ROLLER ASSY	1	64		SCREW ($2 \mathrm{~mm} \times 12 \mathrm{~mm}$ Flat head,	1
32	1412551901000	REWIND ROLLER	1			Phil.)	
33	1412851901800	SPRING REWIND ROLIER	2	65		SCREW ($3 \mathrm{~mm} \times 7 \mathrm{~mm}$ Pan head)	2
34	1412352900300	SPACER REWIND ROLLER	1	66		SCREW ($2.6 \mathrm{~mm} \times 4 \mathrm{~mm}$ Truss head)	1
35	1412456900200	WASHER	1	67		Self tapping screw $26 \mathrm{~mm} \times 6 \mathrm{~mm}$	7

14164229002000

SCHEMATIC DIAGRAM

SYMBOL NO.	DESCRIPTION		Q'ty
Resistors			
R2	100 ohm	1/4	1
R1	5.6K ohm	1/4	1
R4, 41	10 ohm	$1 / 4$	2
R20, 38,	39 ohm	1/4	2
R35, 37,	68 ohm	1/4	2
R7, 42,	100 ohm	1/4	2
R33,	220 ohm	$1 / 4$	1
R21,	330 ohm	$1 / 4$	1
R16,	390 ohm	$1 / 4$	1
R31, R39	470 ohm	1/4	2
R24	560 ohm	$1 / 4$	1
R34, 36,	820 ohm	1/4	2
R3, 5, 17, 22, 26,	1 K ohm	1/4	5
R15,	1.8 K ohm	1/4	1
R14,	2.2K ohm	1/4	1
R10, 12, 23	3.3 K ohm	1/4	3
R19	5.6K ohm	1/4	1
R30	8.2K ohm	$1 / 4$	1
R11, 27, 28	10K ohm	1/4	3
R8, 9, 40,	15 K ohm	1/4	3
R6, 32	18 K ohm	$1 / 4$	2
R29, 43,	39K ohm	$1 / 4$	2
R13	56K ohm	$1 / 4$	1
R25	2.7K ohm	1/4	1
R18	33K ohm	$1 / 4$	1
Capacitors			
C7	Mylar 390 PF		1
C32	Mylar 330 PF		1
C33	Mylar $0.0012 \mu \mathrm{~F}$		1
C31	Mylar $0.0015 \mu \mathrm{~F}$		
C20, 23, 24, 27, 34,	Mylar $0.01 \mu \mathrm{~F}$		5
C15	Mylar $0.013 \mu \mathrm{~F}$		1
C1	Mylar $0.018 \mu \mathrm{~F}$		1
C8	Mylar $0.033 \mu \mathrm{~F}$		1
C21	Mylar $0.047 \mu \mathrm{~F}$		1
C29	Mylar $0.001 \mu \mathrm{~F}$		1
C16	Mylar 470 PF		1
C5	Alsicon $1 \mu \mathrm{~F}$	10WV	1
C17	Alsicon $0.15 \mu \mathrm{~F}$	10WV	1
C2, 9, 11, 14, 19, 28	Electrolytic $10 \mu \mathrm{~F}$	10WV	6
	Electrolytic $33 \mu \mathrm{~F}$	$3 W \mathrm{~V}$	1
C4, 13	Electrolytic $47 \mu \mathrm{~F}$	3WV	2
C10, 22	Electrolytic $100 \mu \mathrm{~F}$	3WV	2
C18	Electrolytic $100 \mu \mathrm{~F}$	10WV	1
C3, 12	Electrolytic $220 \mu \mathrm{~F}$	10WV	2
C25, 26	Electrolytic $330 \mu \mathrm{~F}$	10WV	2
C35	Electrolytic $47 \mu \mathrm{~F}$	15WV	1
C30	Tubelar $1000 \mu \mathrm{~F}$	10WV	1
C6	Mylar $0.027 \mu \mathrm{~F}$		1

