

ENJOY YOUR BOOKS

PLEASE VISIT OUR STORE FOR EVEN MORE GREAT STUFF!

WWW.EVERYTHING4LESSSTORE.COM

COPYRIGHT NOTICE

ALL MATERIALS INCLUDING CD/DVD AND PDF FILES ARE COPYRIGHTED WWW.EVERYTHING4LESSSTORE.COM VON WALTHOUR PRODUCTIONS AND MAY NOT BE REPRODUCED, COPIED OR RESOLD UNDER ANY CIRCUMSTANCES. YOU MAY HOWEVER MAKE A COPY FOR YOUR OWN PERSONAL BACKUP. MATERIALS ARE FOR PERSONAL USE ONLY.

IF YOU PURCHASED THIS FROM ANYWHERE BUT FROM US PLEASE NOTIFY US IMMEDIATELY SO THAT WE MAY CHECK IF YOU PURCHASED FROM AN AUTHORIZED RESELLER SO WE CAN LET YOU KNOW IF YOU NEED TO RETURN FOR FULL REFUND FROM AN UNAUTHORIZED SELLER.

THANKS AGAIN AND PLEASE TAKE THE TIME TO VISIT OUR STORE.

ATTENTION! EVERYTHING ON SALE NOW!!

LFG-1310

FUNCTION GENERATOR

SERVICE MANUAL

These servicing instructions are for use by qualified personnel only. To avoid electrical shock, do not perform any servicing other than that contained in the service manual unless you are qualified to do so.

CONTENTS

	Page
1. SPECIFICATIONS	3
2. TEST EQUIPMENT REQUIRED	4
3. CALIBRATION PROCEDURE	5
3.1 General	5
3.2 Initial control Settings	5
3.3 Power Supply	5
3.4 Offset Adjustment-1(Current source)	6
3.5 Buffer Amplifier	6
(1) Bias Adjustment	6
(2) Symmetry Checking	6
3.6 Offset Adjustment-2(Tuning Amplifier)	7
3.7 Frequency Adjustment-1(1kHz)	7
3.8 Symmetry Adjustment-1(Dial "1")	7
3.9 Dial Settings	8
3.10 Frequency Adjustment-2(10Hz)	8
3.11 Symmetry Adjustment-2(x1 RANGE)	8
3.12 Frequency Adjustment-3	9
(1 1MHz	9
(2 10 MHz	9
(3 5 MHz	9
(4 100kHz	9
3.13 Sweep Generator	9
(1) Symmetry Adjustment	9
(2) Anti-log Circuit Adjustment	10
3.14 High Frequency Compensation	10
(1) Gate	10
(2) Output Amplifier	11
3.15 Distortion Adjustment	11
3.16 AM Modulation	11
	10
4. TROUBLESHOOTING PROCEDURE	13
4.1 Troubleshooting Aid-1	13
4.2 Troubleshooting Aid-2	13
(1) Overall	13
(2) FUNCTION	14
(3) Burst	15
(4) Sweep	15
(5) AM modulation	16
(6) Others	16

		Page
5.	ADJUSTMENT LOCATIONS Top view Bottom view	17 17 18
6.	PRINTED CIRCUIT BOARD T-3568 Panel control-1 T-3569 Panel control-2 T-3570 Main board T-3571 Power supply, Output amplifier	19 19 19 20 21
7.	BLOCK DIAGRAM/SCHEMATIC DIAGRAM Block diagram VCG Comparator, Burst, Sync Sweep generator, MODE switch AM, Output amplifier, Attenuator Power supply, Sine converter, FUNCTION switch	2 2 2 2 2 3 2 4 2 5 2 6 2 7
8.	PARTS LIST Main frame Control board-1 Control board-2 Main board Power supply, Amplifier board	28 28 28 28 29 32

9 . CABINET REMOVAL

1. SPECIFICATIONS

Frequency Range: Accuracy:	0.01Hz to 10MHz, 9 ranges x0.01 to x100k ranges±5% of full scale
Accuracy.	x100 to x100k ranges
Waveforms:	Sine wave, triangle wave, square wave, ramp wave, and
	pulse wave
Sine wave:	
Flatness	0.01Hz to 100kHz , ±0.3 JB
	100kHz to 10MHz ±1 dB
Distortion	10Hz to 50kHz 0.5% or less
Triangle wave:	
Linearity error:	1% at 100Hz
Square wave:	
Rise/fall time:	25ns or less (with max, output)
Symmetry Variation:	20:80 to 80:20 (0.01Hz to 1MHz)
Operation Mode:	
CW:	Continuous generation
TRIG/GATE:	TRIG one cycle oscillation triggered by input signal
	GATE oscillation only when input is HI 0.1Hz to 1MHz
Frequency range: Input voltage:	TTL
Input frequency:	DC to 100kHz
Start/stop phase:	Variable
BURST:	Burst wave oscillation for gate time of 1ms to 10s by built-
	in oscillator. ON/OFF time is symmetrical and variable.
SWEEP:	
Sweep mode:	Selection of linear and logarithmic sweep:
Sweep time:	Ims to 10s, 2 ranges, continuously variable. Fly-back line
	interval is symmetrical and variable.
Sweep width:	Max. 1:100, continuously variable
	(sweep start frequency can be specified.)
Output Characteristics:	
Output level:	20Vp-p (output terminal open)
Attenuator:	0, 20, 40, and 60dB, continuously variable
Output impedance: DC offset:	50ohms ±10% Max, ±10V (output opened)
SYNC output:	TTL level (duty cycle are symmetrical and variable.)
GCV output:	Voltage output in proportion to frequency, 0 to 5V
	(max, frequency in each range)
SWEEP output:	Sweep output in sweep mode, 0 to -5V
SWEEP/BURST gate out:	
-	Modulation level 0 to 100%, continuously variable
	Input signal level max, 5Vp-p Suppressed-carrier mode
External Control of Frequenc	y (VCG):
Frequency range:	Max. 1000:1, with frequency dial set to "10"
Input level:	0 to $-5V$ (±20%) (frequency is decreased by negative voltage)
Power Supply:	100 VAC ±10% 50/60Hz 30VA
	120, 200, 220, and 240V available by adjusting the power
	transformer tap
Size and Weight:	300(W) x 100(H) x 300(D)mm, approx. 3.5kg
Accessories:	Connection cable: LC-204B (50 ohm BNC-clip cable) x 1 Instruction manual x 1
	Option: 50-ohm terminator LT-2049
Remarks: 1. The specification	ons described above are applicable at a temperature of 23°C
	tive humidity of 40 to 85%.
2 Unlass otherwi	te stated the frequency dial is set to 1 to 10 and SYM-

 Unless otherwise stated, the frequency dial is set to 1 to 10, and SYM-METRY is set OFF for the specification data.

2. TEST EQUIPMENT REQUIRED

The following test equipment is required for calibration and servicing of the Model LFM-1310. The suggested specifications are the minimum necessary for proper calibration of this instrument.

Test Equipment	Minimum Spec
- Multimeter	0 - 20V Accuracy < 0.1% 3-1/2 digit
- Oscilloscope	10mV sensitivity 100MHz bandwidth Delayed sweep Low capacitance probe
- Frequency Counter	0.01Hz - 10MHz
- Distortion Meter	1kHz 1% full scale
- Audio Generator	ikHz sine wave
- Function Generator	100kHz TTL signal
- 50 ohm Terminator	Feedthrough

3. CALIBRATION PROCEDURE

- 3.1 General
 - Calibration should be performed after a 30 minute warm-up period. It should also be confirmed that the unit is connected to the rated power line voltage.
 - During the adjustment procedure, remove the case only when necessary and replace immediately after making an adjustment. This will maintain all circuits at constant operating temperature.
 - All adjustments should be completed in the given order, because some adjustments interact with others.

3.2 Initial Control Settings

- The initial control settings to be used for each check and adjustment are listed below. Any variations from these settings are stated in the applicable procedure.

FREQ Dial	10
FREQ RANGE	× 100
MODE	CW
FUNCTION	Sine wave
OUTPUT	
DC OFFSET	OFF
ATTENUATION	0dB
VARIABLE	Fully clockwise
SWEEP/BURST/AM MOD	
SYMMETRY	OFF
VARIABLE	Center
AM CARRIER LEVEL	0
TIME	$1 - 100 {\rm mS}$
START/MOD LEVEL	Center
SET	START
LIN-LOG	LIN
AM	OFF
TRIG START LEVEL	Center
SYMMETRY	OFF

- 3.3 Power Supply
 - Connect the DC voltmeter between TP3(+17V line) and/or TP4(-17V line), on the pc board(T-3571), and chassis.
 - Adjust VR8(T-3571) so that the voltages at the TP3 and TP4 are exactly same absolute value.

- Check all supplies according to Table 3-1.

Voltage	Test point
+14V	D43(T-3570) anode
– 14V	D44(T-3570) cathode
+6V	Junction of R53 and R54
+5V	IC13(T-3570) pin3
+5V1	D42(T~3570) cathode

Table 3-1

- 3.4 Offset Adjustment-1 (Current source) - Set: FREQ Dial Fully counterclockwise FREQ RANGE x100
 - Connect the DC voltmeter between TP4 and TP5(T-35?0).
 Note the voltage reading to three places of decimal.
 Remove the voltmeter.
 - Connect the DC voltmeter between TP2 and TP3(T-35?0).
 - Adjust VR3(T-3570) for exactly same voltage as above noted.
- 3.5 Buffer Amplifier

- Set: FREQ Dial FREQ RANGE FUNCTION SYMMETRY Fully counterclockwise x100 Square wave On

- Connect the oscilloscope to OUTPUT connector and set the TIME/DIV control to 0.1mS, SLOPE button to +. Adjust TIME VARIABLE control for 1 cycle display.
- Bias Adjustment

 Adjust VR6(T-3570) to the center of the stable oscillation range when rotate the SYMMETRY control at both extreme positions.
- (2) Symmetry Checking

 Expand the negative going edge, located at the center area of the graticule, 100 times using the delayed sweep mode of the oscilloscope as shown in Figure 3-1.

-6 LFG-1310

Observe this point

- The displacement of the positive and negative going edge should be less than 0.4%(4 divisions) when switch the SLOPE button between + and -.
- 3.6 Offset Adjustment-2 (Tuning Amplifier)
 Connect the junction of R1 and VR1(T-3570) to chassis by short clip lead.
 - Connect the DC voltmeter to TP2(T-3570).
 - Adjust VR2(T-3570) for a voltmeter reading of 0.000V.

3.7	Frequ	lency	Adjustment-1(1kHz)		
-	Set:	FREQ	Dial	10	
		FREQ	RANGE	x 100	
		FUNCI	TION	Square	wave

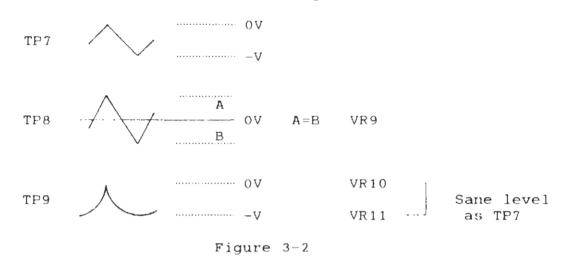
- · Connect the frequency counter to OUTPUT connector.
- Adjust VR1(T-3570) for a frequency reading of 1.005kHz.
- 3.8 Symmetry Adjustment-1(Dial "1")
 Set: Same as 3.7
 - Connect the frequency counter to OUTPUT connector.

Connect the oscilloscope to SYNC OUT connector and set the TIME/DIV control to 0.1mS/DIV for 1 cycle display.

- Connect the DC voltmeter to TP1(T-3570) and note the voltage. Call the voltage -V.
- Rotate the FREQ Dial clockwise until the voltage reading becomes -V/10.

- Adjust VR4 and VR5(T~3570) alternately to obtain an 100Hz, symmetrical square wave.
- 3.9 Dial Settings - Set: FREQ Dial 1 FREQUENCY RANGE x100
 - Connect the frequency counter to OUTPUT connector.
 - The frequency reading should be between 97Hz and 103Hz.
 - If nct, reset the FREQ Dial by two set screws on the dial knob for frequency reading of 100Hz then repeat step 3.7 and 3.8 to re-adjust the frequency.
- 3.10 Frequency Adjustment-2(10Hz) - Set: FREQ Dial 10 FREQ RANGE x1 FUNCTION Square wave
 - Connect the frequency counter to OUTPUT connector.
 - Adjust VR8(T-3570) for a frequency reading of 10.00Hz.

3.11	Symmetry Adjustment-2(x1	RANGE)
_	Set: FREQ Dial	1
	FREQ RANGE	× 1
	FUNCTION	Square wave


- Connect the oscilloscope to OUTPUT connector and set the TIME/DIV control to 0.1S/DIV then expand the sweep width 10 times using horizontal magnifier mode.
- Adjust VR7(T-3570) precisely so that the displacement of the positive and negative going edge of the square wave should be less than 0.5%(0.25 division) when switch the SLOPE button between + and -. Refer to Figure 3-1.

-8-LFG-1310

3.12 Frequency Adjustment-3 (1) 1MHz ·· Set: FREQ Dial 10 FREQ RANGE x100k FUNCTION Square wave Connect the frequency counter to OUTPUT connector. - Adjust VCI(T-3570) for a frequency reading of 1.000MHz. (2) 10MHz - Set: FREQ Dial 10 FREQ RANGE x1M- Adjust VC4(T-3570) for a frequency reading of 10MHz. (3) 5MHz - Set FREQ Dial 5 FREQ RANGE $\times 1M$ - Check that the accuracy is between 4.8MNHz and 5.2MHz. - If not, adjust VC3(T-3570) so that the frequency reading is 10000 times of the x100 RANGE. - Repeat the step (1) and (2) if necessary. (4) 100kHz - Set: FREQ Dial 10 FREO RANGE x10k - Adjust VC2(T-3570) for a frequency reading of 100.0kHz. 3.13 Sweep Generator Symmetry Adjustment (1)Set: SWEEP/BURST/AM MOD TIME $1 - 100 \, \text{mS}$ TIME VARIABLE Fully counterclockwise SYMMETRY OFF SET SWEEP - Connect the oscilloscope to SWEEP/BURST GATE OUT connector. - Adjust VR4(T-3569) for a symmetrical square wave.

Anti-log Circuit Adjustment

 Adjust following adjustments on the pc board(T-3570) to obtain a waveform as shown in Figure 3-2.

3.14 High Frequency Compensation (1) Gate - Set: FREQ Dial

	+-		
t :	FREQ	Dial	10
	FREQ	RANGE	×100k
	MODE		GATE
	FUNCT	N O1	Sine wave

- Connect the oscilloscope to OUTPUT connector via 50 ohm terminator.
- Apply 100kHz TTL signal from the reference function generator to TRIG IN connector.
- Set the TRIG START LEVEL control to obtain a waveform as shown in Figure 3-3.

Figure 3-3

- Adjust VC5(T-3570) so that the base line becomes as flat as possible with less ringing and overshoot.

-10-LFG-1310

(2)	Output Amplifier	
-	Set: FREQ Dial	1
	FREQ RANGE	x1M
	MODE	CW
	FUNCTION	Square wave
	ATTENUATION	0dB
	VARIABLE	Fully clockwise
	Connect the oscilloscope to terminator.	OUTPUT connector via 50 ohm
	Adjust VR1-4 and VC1(T-3571)	for a flat top square wave.
-	Set: FUNCTION	Sine wave
	Adjust vertical sensitivity of divisions display.	of the oscilloscope for 6
-	Set: FREQ Dial	10
	The sine wave amplitude shou. 6.5 division.	ld be between 5.5 division and
_	Repeat above adjustment if ne	ecessary.
3.15	Distortion Adjustment	
	Set: FREQ Dial	10
	FREQ RANGE	x1k
	FUNCTION	Sine wave
_	Connect the distortion meter terminator.	to OUTPUT connector via 50 ohm
	Adjust VR6 and VR7(T-3571) alwave distortion.	ternately for minimum sine

3.16 AM Modulation - Set: FREQ Dial

Set:	FREQ Dial	10
	FREQ RANGE	x10k
	FUNCTION	Sine wave
	SWEEP/BURST/AM MOD	
	AM	ON
	AM CARRIER LEVEL	Fully clockwise
	MOD LEVEL	Fully clockwise

- Connect the oscilloscope to OUTPUT connector.
- Connect the sine wave generator to MOD IN connector and set the frequency to 1kHz, output level for 100% AM.
- Adjust CARRIER LEVEL control and VR5(T-3571) alternately for correct DSB(Double Side Band) waveform as shown in Figure 3-4.

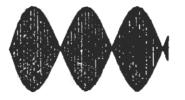


Figure 3-4

4. TROUBLESHOOTING PROCEDURE

- 4.1 Troubleshooting Aid-1
 - Confirm that the any equipment used with the LFG-1310 is operating correctly.
 - Check all control settings, because an incorrect setting can make a good unit appear defective. If there is any question about the function, see the INSTRUCTION MANUAL for a correct operation.
 - Check all circuit for visual defects such as broken component, loose connections, open wire, pcor soldering etc.
 - Some troubles can be solved with proper adjustment.
 - Check voltage, waveform and state of logic circuit as shown in the "7 BLOCK DIAGRAM/SCHEMATIC DIAGRAM" to trace the defective circuit. Then, troubleshoot the associated circuit and/or the control circuit. Start with the power supply.

4.2 Troubleshooting Aid-2

- (1) Overall operation is not satisfactory or unit is "dead".
- a. Check the power supplies. Refer to "3.3 Power supply". Secondary voltage of the power transformer +17V: Check IC4 and associated circuit (Adjust VR8) -17V: Check IC5 and associated circuit (Adjust VR8) +14V: Check D43 and associated circuit -14V: Check D44 and associated circuit +6V: Check D9 and associated circuit +5V: Check IC13 and associated circuit +5V1: Check D42 and associated circuit

-13-LFG-1310

(2) FUNCTION

a. No triangle wave comes out with CW MODE.

Check that triangle wave is present at TP6.

- Yes: Check waveform at pin 1 of P2(T-3571) for triangle wave.
 - Yes- Check output amplifier(Q1-9, IC1 T-3571) Attenuator(S1, R11-16).
 - No- Check FUNCTION switch(S2 T-3568), AM ON/OFF switch(S3 T-3569), VARIABLE control(VF4, 5).
- No: Check the triangle generator by following procedure. Apply 1kHz sine wave from audio generator to the gate of Q7(T-3570) and set the amplitude about 1CVp-p. Check that the clipped sine wave is present at the OUTPUT connector.
 - Yes- Connect the DC voltmeter to TP1(T 3570). The voltage reading should be between about -60mV and -5.5V when rotate the FREQ dial from fully clockwise to fully counterclockwise. And also, the voltage at the TP3 and 4 are proportioned to the voltage at TP1. If the voltage changes correct, check current sources(IC4, 5, Q3-6), diode bridge(D3-10 T-3570). If the no voltage is present, check tuning amplifier(IC1 T-3570) and SYMMETRY control. No- Check comparator(IC7, Q13-20 T-3570), buffer amplifier(Q7-10 T-3570).

b. No sine wave comes out

- Confirm that the triangle function works correctly. Yes: Check waveform and DC voltage at the sine wave converter(Q15-20 T-3571), FUNCTION switch and associated circuit.
- No: Check the triangle generator.
- c. Distorted sine wave comes out Adjust VR6, 7(T-3571). Refer 3.16.
- d. No square wave comes out Confirm that the triangle function works correctly. Yes: Check FUNCTION switch and associated circuit. No: Check the triangle generator.
- e. No frequency change or intermitttent by rotating FREQ dial. Check VR1, FREQ RANGE switch and range capacitors(C17-22). If x1 and lower ranges do not work, check capacitance multiplier(IC6, Q11, 12 T-3570).

-14-LFG-1310

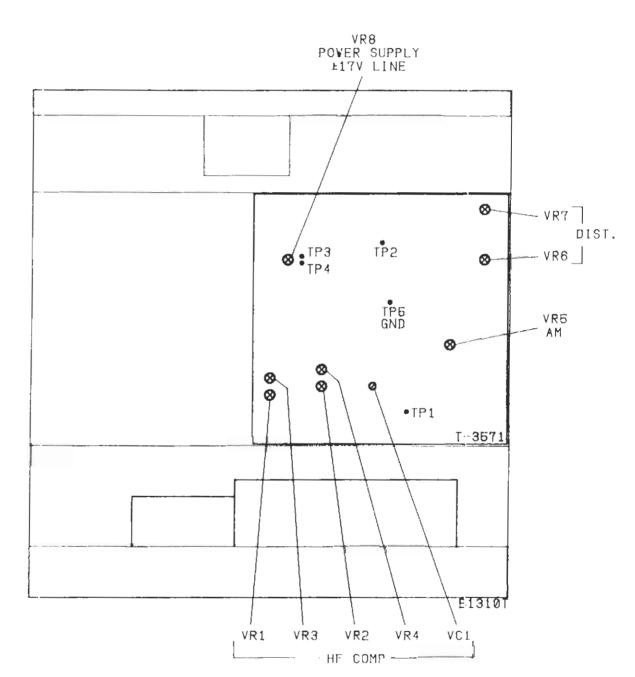
- f. No SYMMETRY control works Check S1, VR1(T-3569) and associated circuit. g. No DC OFFSET works Check IC1(T-3570) and associated circuit. (3) Burst a. No burst signal comes out Check waveform at TP7(T-3570) for triangle wave which frequency is changed by rotate the TIME VARIABLE control. Yes: Check input signal at following points of burst gate (T - 3570). Pin 4 of IC9 for triangle wave Pin 5 of IC8 for square wave Pin 1 of IC8 for square wave DC voltage at pin 9 of IC9 from -6.7V to -12V when rotate TRIG START LEVEL control. Yes- Check burst gate(IC8, Q21, 22, 32 T-3570) and associated circuit. Check the signal sources NO No: Integrator(IC10 T-3570), comparator(IC11, 12, Q26-30 T-3570) and associated circuit. b. TRIG MODE Check one-shot multivibrator(IC1 T-3568) and signal source of TRIG IN connector. C. GATE MODE Check burst control(IC12 T-3570) and signal source of TRIG IN connector.
- d. No SYMMETRY control works Check integrator and comparator(IC10-12, 026-28 T-3570).
- e. No TRIG START LEVEL control works VR2(T-3569) and associated circuit. See (2) a.
- (4) Sweep
- a. Confirm that the CW came out from the OUTPUT connector, also the frequency to be changed by rotating the FREQ dial

b. No sweep mode works

Check waveform at TP7(T-3570) for triangle wave which frequency is changed by rotate the TIME VARIABLE control. Yes: Check waveform at pin 2 of P3(T-3570).

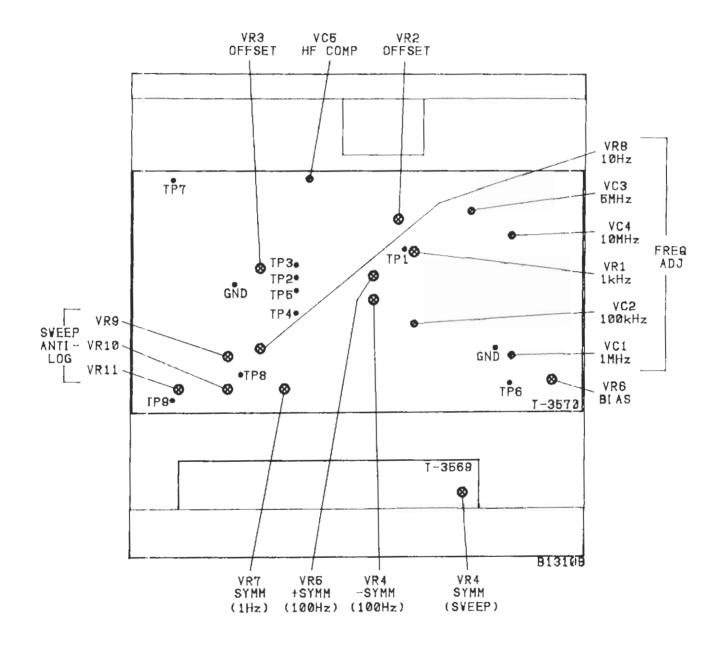
- Yes- Tuning amplifier(IC1 T-3570) and associated circuit.
- No Integrator and comparator(IC10-12, Q26-28 T- 3570).

No: Check MODE switch and associated circuit.

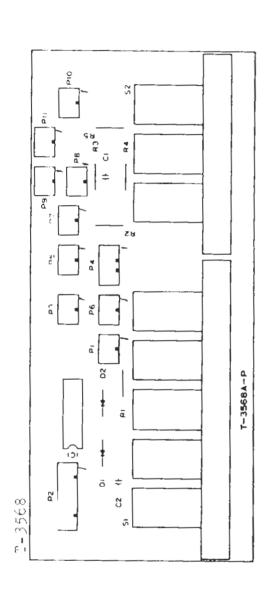

- c. Log sw∋ep does not work Check antilogarithmic converter(IC14-16 T-3570) and associated circuit
- d. No sweep time changes Check C1, 2(T-3569) and associated circuit.
- (5) AM modulation
- a. No modulated signal comes out

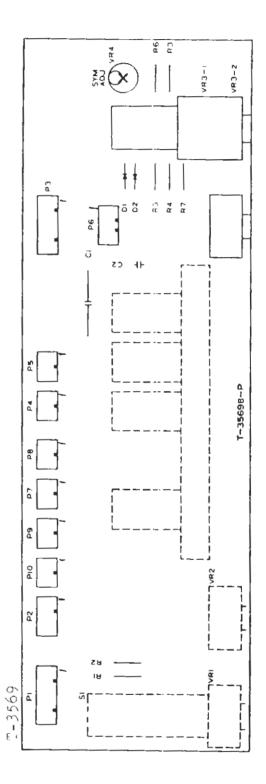
Check waveform at pin 2 of P3(T-3571) for CW and pin 1 of P5(T-3571) for associated signal from MOD IN connector. Yes: Check waveform at base of Q12(T-3571) for modulated

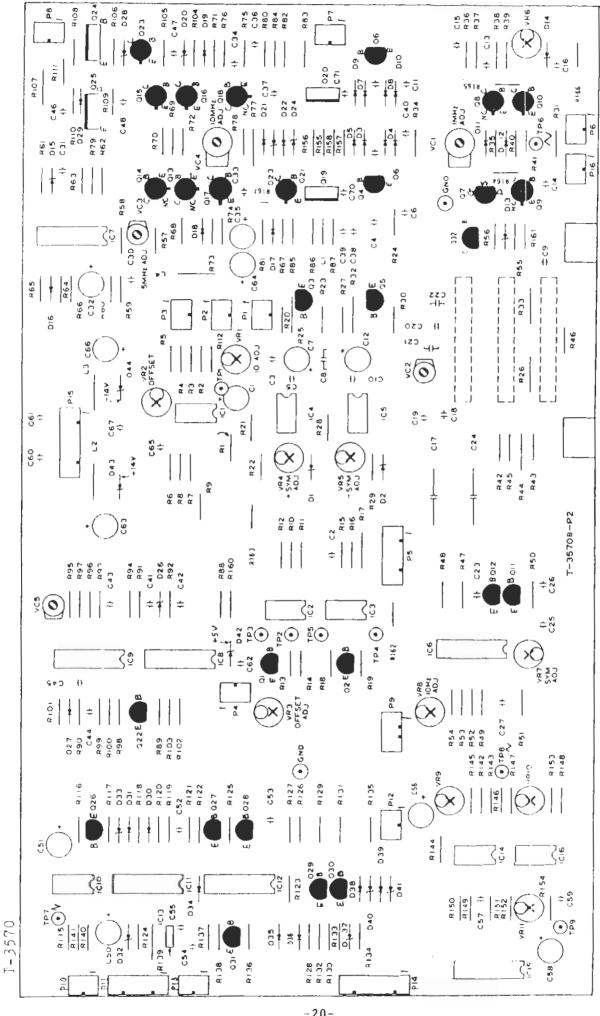
signal. Yes- Check output amplifier(Q12-14 T-3571) and associated circuit.

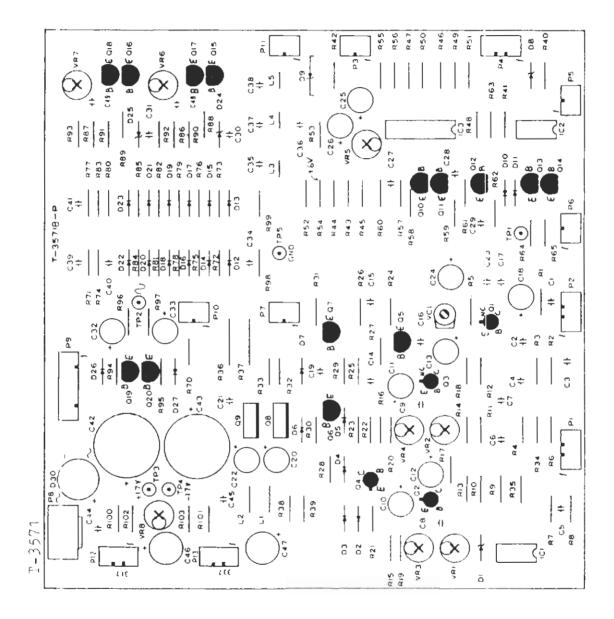

- No- Check IC3(T-3571) and associated circuit.
- No: Check that the signal sources, MOD LEVEL control(VR5 T-3569) and associated circuit.
- (6) Others
- a. No SYNC output Check sync output amplifier(Q23-25 T-3570).
- b. No SWEEP/BURST GATE OUT signal comes out Check Q31(T-3570) and associated circuit.

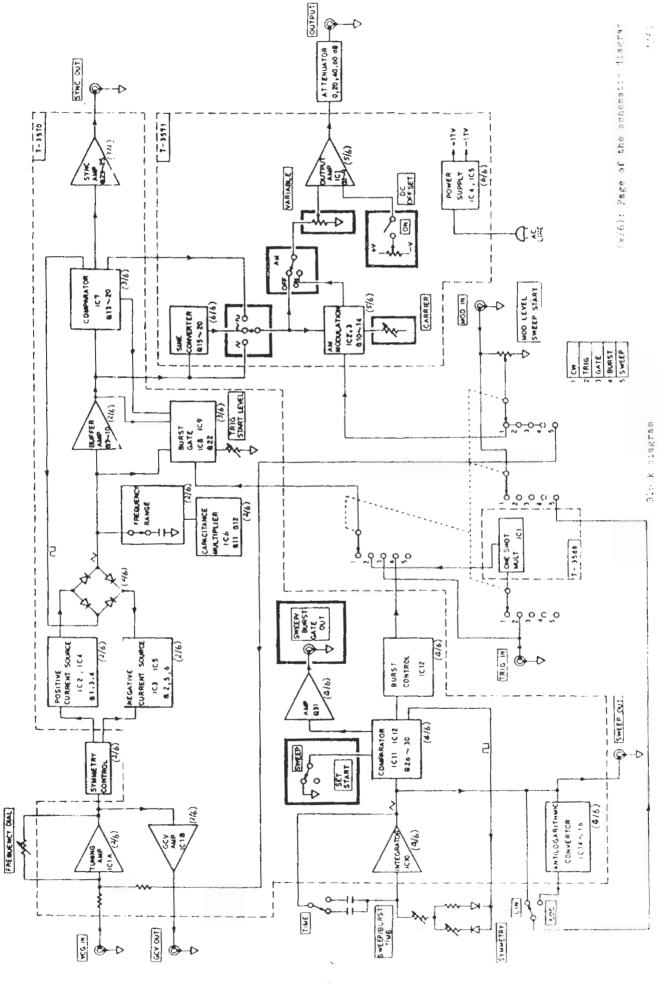
5. ADJUSTMENT LOCATIONS

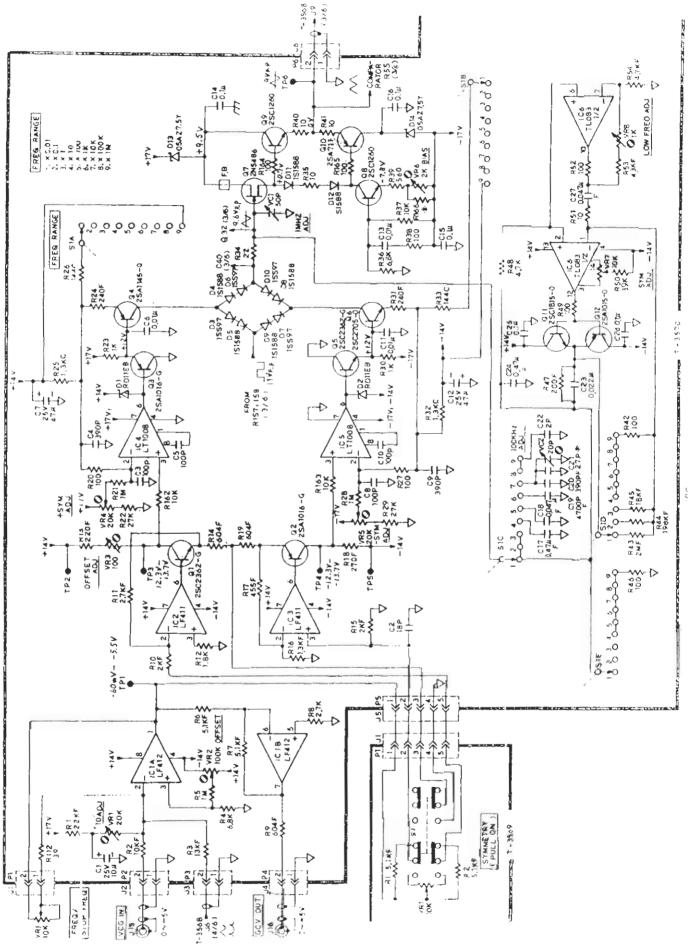



<TOP VIEV>

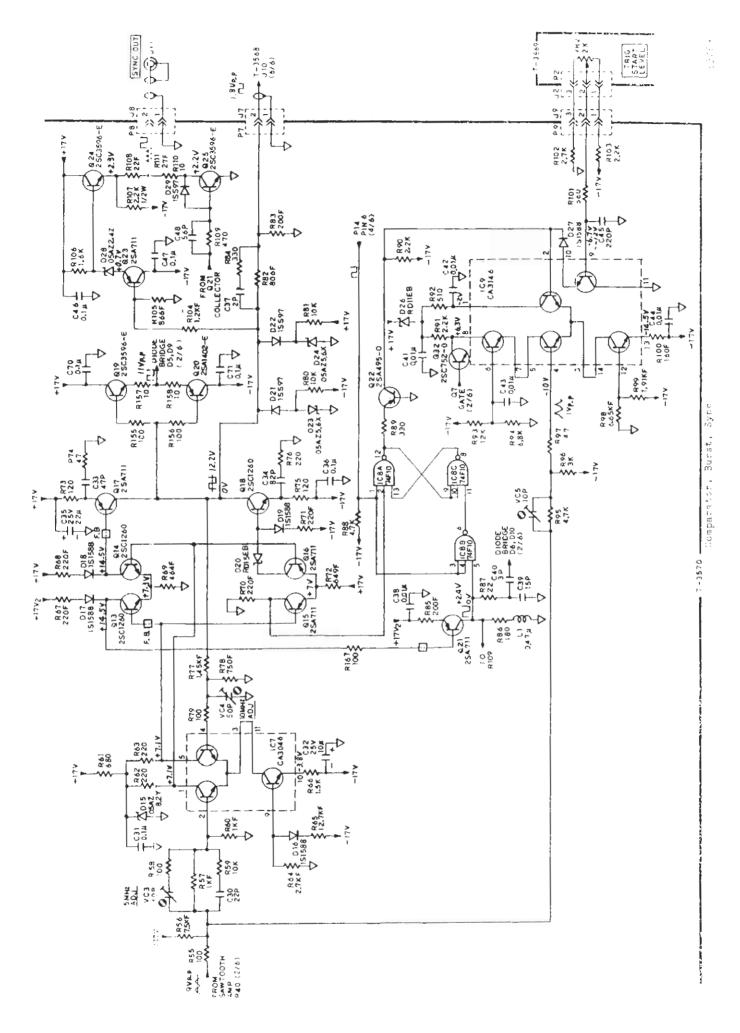

-17-186-1310

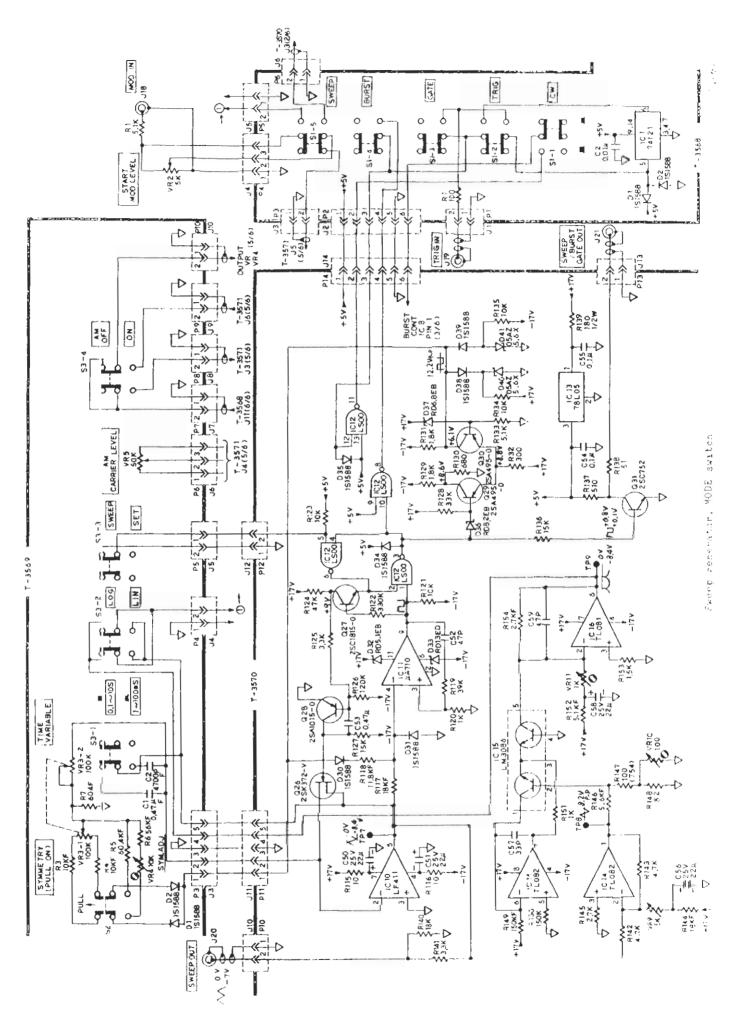

-18-LFG-1310

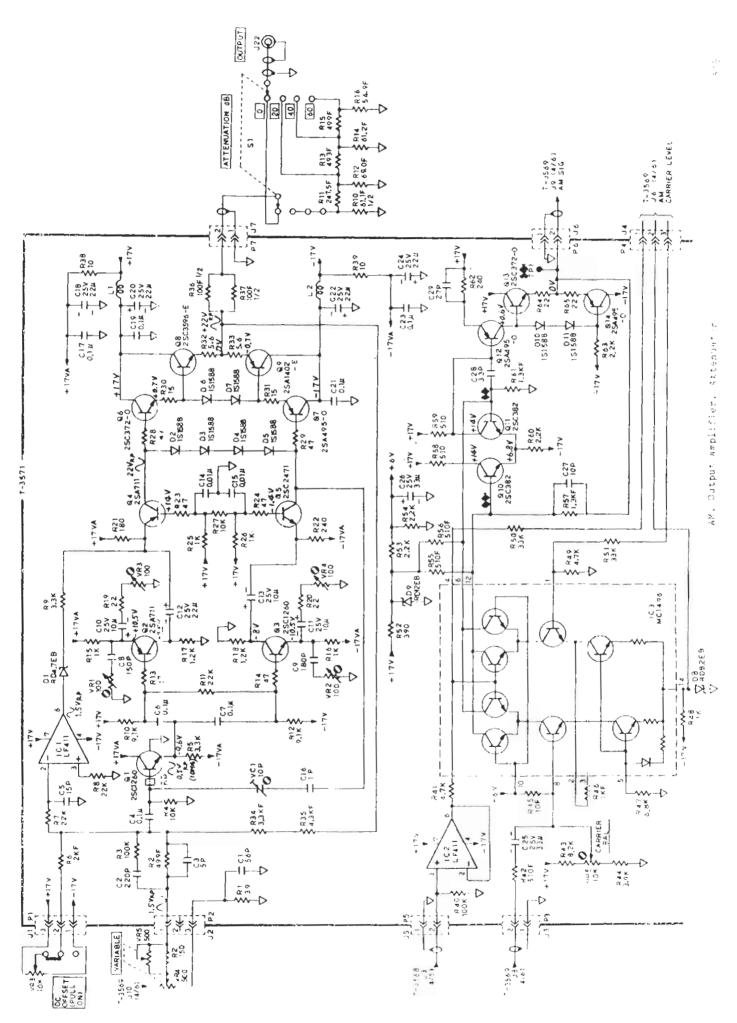




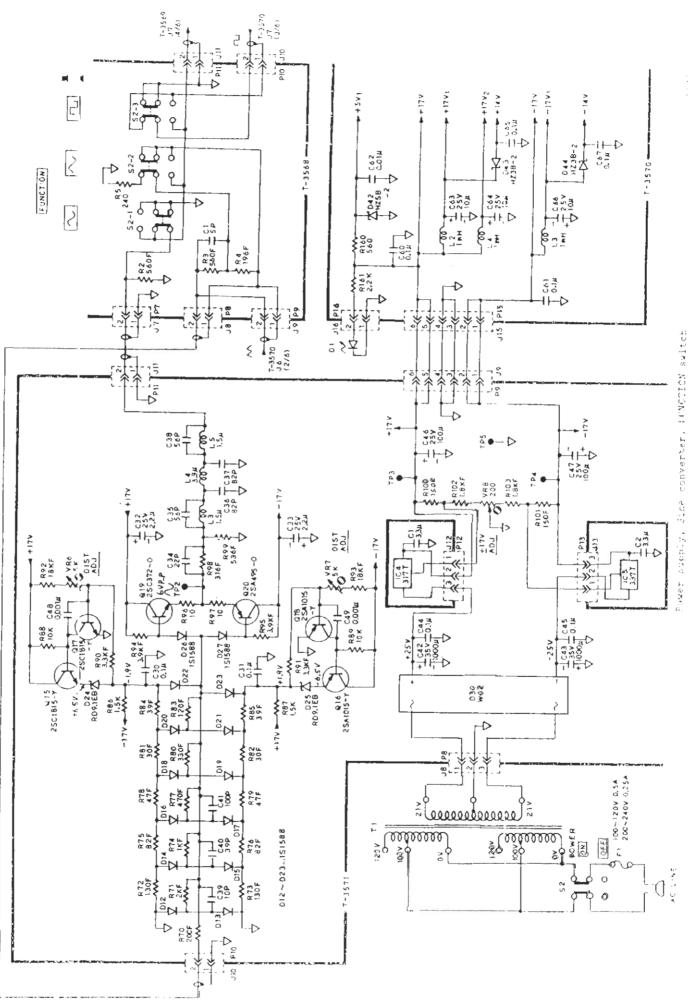
⁻²⁰⁻LFG-1310




-23-LFG-1310


000

.



-24-LFG-1310

⁻²⁶⁻LFG-1310

- 27 -LFG-1310

2

NOI	· · · · · · · · · · · · · · · · · · ·	500€ 0.110F 500<	1515 1515 1515	SN74121	0-548 MODE' 0-548 'FUNCTION"	4.6.4.0		5.1X 04M 5.1X 04M 7.2 10.0K 04M	200 CHE CHE CONTRACTOR	100 000 202 1220 5	FILM 100K/100K 0HM 2000 1/24 PRIG-LE-EL FILM 100K/100K 0HM 2000 1/26 - 5788/TIME' 10K 0HM 2000 1/26 FILM 50K 0HM 2000 1/26 AR 54R9 1EVEL:	řilh 0.47uF 12 m00v řilm 4700pF 11 100v	01386 101388	- PLAN MULTSAUGEPABURST - TUP-	T - 35538
OESCRIPTION	8 8 7 7 1 1 1 1 1	MICA Oerahic	DETECTOR DETECTOR	11L	F-USH PUSH				METAL FILM METAL FILM METAL FILM METAL FILM			PLASTIC Plastic	DETECTOR	HSfid	
LDR PI NG.	68 CONT DU	-CAPACITURS- C1 2120050005 C2 2010103005	∈>- 311000004 3110006004	-INTEGRATED CIRCUIT- 101 3250121000	-suitches- si 4000548004 s2 4000549006	80ARD- 5903568018	CUNTROL BUARD-2	-KESISTUKS- Ri (315101006 R3 (315101006 R3 (315101006	1311002000 1316042002 1315602008	9865 258157085- 9865 258157085- 10001015151	1815013201 1815020006 171104079 1815008079	-CAPACITORS- C1 2194022003 C2 2192025007	ES - 311006004 3110006004	CH- 4000547002	B0ARD- 5903569029
Ö Z	- 1 - 3568	-08PA 01 02	-010045- 01 02	- INTE 101	- SULT 55 52	8 0 1	()	ж ш ч – № М Г & & & & : Г & & & & :		- <rr><td>2 2 2 2 2 7 7 7 7 7 1 10 4 10</td><td>00-0 00-0 00-00-0 00-00-00-00-00-00-00-0</td><td>-DIUDES D1 02</td><td>-Sultch-</td><td>2 2 4 -</td></rr>	2 2 2 2 2 7 7 7 7 7 1 10 4 10	00-0 00-0 00-00-0 00-00-00-00-00-00-00-0	-DIUDES D1 02	-Sultch-	2 2 4 -
		2 X X 0 Q	17	2174 2174 2175 2175 2175 2175 2175 2175 2175 2175	LIN. IN "FREG" 1780 "MOD LEVEL" 1780 "DC OFFSET"	20% 35< 20% 35<	- たBrio			104710N" 1046#*	250mA -180V-264V- 500mA -90V-132V-	. 6. 35X31 . 3.>		10 - 20 -	
			61.1 0HM 241 5 0HM 69.0 0HM 493 0HM		10k 0HM 1.52 5k 0HM 202 10k 0HM 202	3.3 .7 ЦР	TLG164	LM317T LM337T	∩-537	G-546A "ATTENUATION" E58-707020 "PONER"	4 T S	вис 136 FH-032(6		1 () () 1	000 000 000 040 040 040 040 040
DESCRIPTION		CARBON FILM Carbon Film	METAL FILM Metal stim Metal film Metal film		PLASTIC Carbon Film Carbon Film	EL ECTROLYTIC EL ECTROLYTIC	LED	Regulator Regulator	TRANSFORMER	RUTARY	TIME LAG Time Lag	CONNECTOR Fuse Húlder	ŀ	5 -	METAL FILM Metal Film Metal Film Carbon Film
LŪŘ PI NO.		10RS- 1010512003 10101512003	1346119002 1362475004 1326909007 1324930007	1326129001 1314990007 1315499001	3LE RESISTORS- 1940046003 1815008501 1815011115	170RS- 2470339008 2470339008	3130063000	TEGRATED CIRCUITS- 32:位またひは4 32:位またひは4	rgR#ER= §80053700.₄	163- 400054556019 402801380009	т363735007 т363750007	ELLANUUS= 4310714005 437196903	1000-000-000-000-000-000-000-000-000-00	0.10101 910101 910101	1315500004 1315500004 1311086000
. 02	Ĩ	ца Ца	2 - 01 D 2 - 01 D	8 4 10 10 10 10	- VARIABLE VR1 VR2 VR3	-CAPACITORS- 01 247 02 247	-010DE-	- 1 N 4 1 - 1 N 4 - 1	- TRANSFORME製= 	でき の い し し し し し し し し し し し し し	- FUSE - F	- 41 SCEL	100 and		ਪ੍ਰਦਾਰ ਪ੍ਰ ਦਾਜ਼ਾਬ

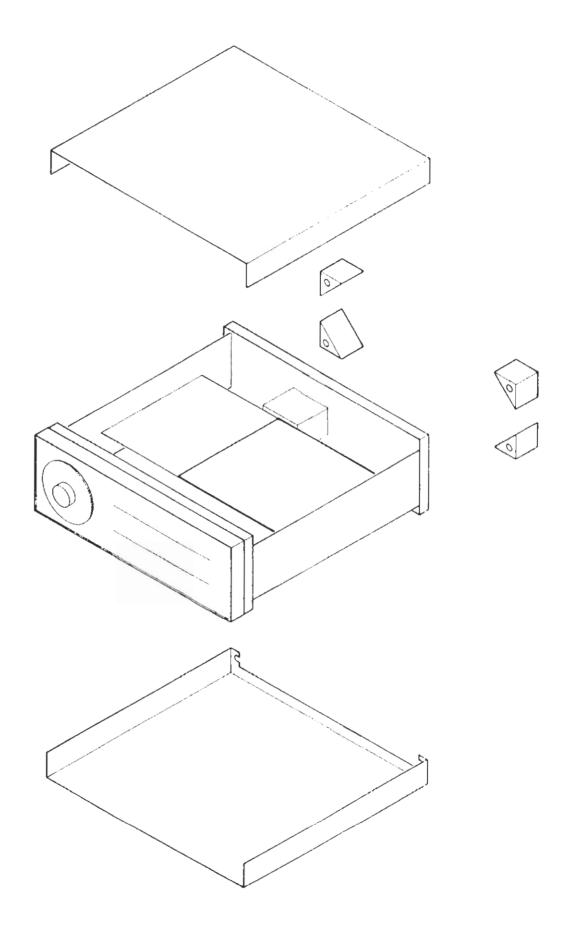
8. PARTS LIST

				1 1 1 1		LUK PI NO.	DESCRIPTION			
					<pre>< T-3570</pre>	CONT				
MAIN BURKU Istārs-	1-3570	*** 02			20 20 20 20 20 20 20 20 20 20 20 20 20 2	1317501004	METAL FILM Metal 21 m	7 5K OHN	22	7 /-
1312302004	METHL FILM	22K OHM	e T	M44	- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11		1.0		27	
1311002000	METAL FILM	ΠO	N .	1.744	R59	1010103006	CARBON FICH		1	1 1
1311302002	METAL FILM	ΗÖ	Ň	ヨケノー	R60	1311001008	METAL FILM		1	1
1010682000			ň	1.46	- 0 - 2 - 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	06810	CARGON FILM	680 UHM	22	サント
	CARGUN YLEG Matai gir s	50	X 3			2001220101		220 UHM	in i	4 /
1315101006	METAL FILM				2 4	1210221002	CEREUN YILM Metal Fith	720	ad a 117 -	4
1010272009	CARBON FILM	5	5	31	R65	1311272009	METAL FILM		2 22	1 /
1316040008	METAL FILM	HO	~	N N	R66	1010152009	CARBON FILM	2K	U	1
1312001004	METAL FILM		N	1/44	R67	220000	METAL FILM	220 OHM	2	7
1312701002	METAL FILM		N	1/41/	R68	1312200000	METAL FILM		~	- / 4
1010182008	CARBUN FILM		ŝ	1.44	Res	1314640000	METAL FILM		7	4/1
1312200000	METAL FILM Metal Reve				Э С С С С С С С С С С С С С С С С С С	1312200000	METAL FILM		~	1/4
1315U40008	METAL FILM		<u>.</u>	1/64	R 7 1	131220000	METAL FIUM		ž	コノユ
13120201014		i in	× :			1316490009	METAL FILM	649 OFF	7	-2: 2:
		AFR OFF			20	2001210101			17 I 17 I	۲
1212200000	METAL FILM				к 0 1 Г Г				20	
	METAL FILM					1010221006	CHROOM FILM		0 II	
1010101002	CARRON FILM		: 2) - 10		K77	1321451006	METAL FUN			
10105000	CARBON FILM		10	347.1	R78	1317500002	METAL FILM	HHU 052	2	4
10:0273001	CARBON FILM		30×	1.44	523	1010101002	CARBON FILM		22	
1010102004	CARBON FILM	HHO XI	2%	1/44	Ret	1010103006	CARBON FILM		75	4
13:240008	METAL FILM			140	R81	1010103006	CARBON FILM		~	4/1
331005005	METAL FILM	Đ.	0.25%	1/44	R82	1318060006	METAL FILM		~	1/6
138400021	METAL FILM AADDAY DIYA	H C	N	13+ \.	N 90	131200002	METAL FILM		ž	4/1
10101010101			0 1	/48	х т 4 Г	1010331009	CARBON FILM		25	
101022000	CRACCA LLC	5.5	4 A 9 M		0.4 20 20 20	1.01210102	DELAL FULD Carron tila		X : - 0	1
1010102004	CARBON FILM	E O	: .	1.7411		10102201010	LARBON FILE		្រាំ	1
1312400603	METAL FILM	- H		14 M	0002	1010472007	CARBON FILM	110 NV 4	s sy b in	ा ग ८.५
:381005005	METAL FILM	0H	0.25%	1.440	. RÜÝ	1,010331069	CARBON FILM	330	22	1.1
1384500021	METAL FILM	5	2	1 / 4 14	Reu	1013222004	CARBON FILM		20	년 (1) (1)
010220000	CARBON FILM	Đ.	2%	1./44	R 41	1010222004	CARBON FILM	2.2K OHM	ΧC	マント
1010101000	CARBUN FILM Doredni film	MH0 01 ×	10		N 60	1010511001	CARBON FILM		20	7 .
1010103006	CARBON FILM		8 X 9 IC			10101450004			201	
1010101002	CARBON FILM	9	22	1.44	5	1010472007	CARBON FILM	έ×	5 KC	
1010551006	CARBON FILM	S	52	1.7415	R96	1010302002	CARBON FILM		20	4
1 01 01 00 00 0			20	1/41	R97	1010470003	CARBON FILM		25	- / 4
		2	21 a 6 - 1					A BUCK UND	M A	- 5
	MUTAL CITU		0.1		く カーマ ズ む	1311911002	GETAL FILG	× :	<u>`</u>	1 / /
1321983009			2			1010561006	DETER TICE		- 1	
1311802002	METAL FILM		Z	1.44	R1 02	1010272005	CARBON FILM		22	
1010101000	CARBUN FILM	HH0 001	22	1.744	R103	1010222004	CARBON FILM	Ň	22	4
13:2000002	METAL FILM	201 CHM	21	1/41	R104	1311201006	METAL FILM	¥¥	22	4/1
1010472007	CARBON FILM	A 7K UHM	N L)	1.4W	R105	1313660000	METAL FILM	aés ùHM	12	0
200101010101	CORGON FILM		2	114-1	R106	016	Ξi	Ϋ́	10	4
			2 a 0 u			N S N S D I	יר אמרא אמרא		N I I	10
101010101010 1919101010	CARGON FILE Astron FILE		0 U			N S	METRL FILM Correct film		× :	4
1314301008	RETAL FILM	MHO XE T	4 M 0 –		2012 2012 2017	CUU1750101		110 514 120 21	N D IN V	4
334701004	METAL FILM			194			- 4 		50	
1010191002	CARBON FILM	4 4 6 F	- 4 I			1010390005			< - 	• • •
					-	2			t a	i -

									0.80	5000	202	203	Jú√	505	254	000	202	200	504	202	>0.9	201	>00	200		1007	1 004	5004	5004	0.34	100	202	×10.	0000	200	254	5004	50 UV	254	3 0 <	2004	205	2000	1000	200	200	202	10 ID	503	502	202	2004	257	254
	1	マイン				3	1 / 34		202	- 0.1	1.02	102	7.0.1		2.0%	X0 1	1 0 1	1 0.2		202				4.4	4 N 	N	12	1.0.7		10 A	N.		4			202	201	1 02:	-2.02				X0 -						101				2.0.2	2.6Z
		U)	CHB CHB		ά μμο Σ	1110 000	OHM V.		1 0.1	13DF	100pF	390pF	1 ÚÚPE	0.010F	4705				U. U. U.			10.0			0.047.0F	• • •	390pF	27pF		0.022 . F			10	2005			1 U 2 4	32PF	2245			0.0101						Ú. 01 CF	220pF	0.1UF	0.144	Sept	22 UF	2205
DESCRIPTION	í –	METAL	0.0	CERME	CERME	5 .	CERME		ELECTRULYIC	MICA		PLASTIC FILM	MICA Official	5	ELEUTRULYIIC VICO	-	PLASILC FILM		ł	ELECIKULY/JU PERMANO				Ē	: _	PLASTIC FILM	H	HICA	;	PLASTIC FILM	1		PLASTIC FILM		CERAMIC	ELECTROLYTIC	HICH		LECTR	iii A	ALCR APPARTO							CERAMIC	HICH	CERANIC	CERAMIC		ELECTROLYTIC	ELECTRULTIAL
LDR PT NO.	CO. LNO)	1940045001	1711004051	1711004042	1711004125	171100400r	1211004042	80	224010006	2120180008	2110101009	2130391008	2110101009	C005010102	6000/01/01/22	200101010112	2130391008	20010101012	CONSULUTUS	5030750577	200000000000000000000000000000000000000	2020010000	2090015006	214402003	2192031002	2192025007	2192030000	2120270009	9000200772	2610223003	2139322003 2050012006	202010000	2152031002	2120220004	2050016006	2240:0006	2120470016	2120820008	2240220006	2090016006	2010200212	2112105000	010000000	201020101020212	2002010102		2002010102	20102010102	2110221009	2090016006	2090016006	2120560008	2240220006	974972072
	×T-3570	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0	VR.B	うよう	VR10	~ × +	-CAPACIT		Ċ2	C3	. ۲4 ۲	200	6 F 2 (200			5	2	14		2	512	C) 8	019	C20	021	200	223	1 10 1 0 2 0		0.02	03 Ú	031	032	C 133	14	0.1	5 T	000	000		- 4	- 04		5 · ·	ተ 1 ተ ነ _) (C46	() 4 /-	54	100	501
	1	3	3.7	1/64	1 / 4 M	ヨサノー			1 / 4 1	37.			1 / 4 E		1.14/1			117/1			(II +		1/24	1.745	10 t / 1	ドゥンド	ヨケノキ	11		1071	19/1		1/41	いるい	17.44	パセント	アナイ				1/44	147	1.746	1.746	1/4M	1 / 411		36						
	 1 			-	F			-	-	-											-			-	-	-	a						-		•-	•							-	-	-	-		0			1.54	101		
	 			HO X	39K 0HM 52 T	2		DHM 5%	0HM 5%	CHM 52	0HM 5% 1		ະ ເ									0HM 552	OHM 52	0HM 5%	.3K UHM 5% 1	0HM 5% 1						CHM 1%	OHM 5% 1	0HM 52% 1	:	USK OHN SX						0HU 52 1		OHD 52	OHM 52 1			971 VO 1100			UHT ZUX 1/3		202 12	201 000 000
DESCRIPTION			1 LT + 28K UHN - 28 - 1	TLM 11.8K 0HM 12 1	1 LM 39K 0HM 5% 1			1 OK DHH SIX	47K OHM 5%	MHO MAR					AK DHM 52							51 OHN 522	180 0HN 52% 1	18K UHM 5%	3.3K 0HM 5% 1	4.7K 0HM 5% 1	4.7K 0HM 5%					150K OHM 1%	150K OHM 5% 1	1K 0HM 52 2	5.0K OHM - 12 - 1		2.7X 0HM 1% 1					2.2K 0HB 522 T		DK OHM 52	1 00 OHM 52 1							CALL NON THE STOLE	CHI AUX AND	
U	CONT.0.>	L CARBON FILM 10 OHM 5% 1 LODGON FILM 10 DOM 5% 1	METALFILM JOK DAM 22 1	METAL FILM 11.8K OHM 12	CARBGN FILM 39K OHM 5%	CARBON FILM - 1X OHM 52 - 1 222000 121 L	CORREON FILM 330K 0HM 52	0103006 CARBON FILM 10K DHM 5%	0473009 CARBON FILM 47K 0HM 5%	DOG CHRON FILM BIK CHM 5%	0124004 CARBON FILM 120K 0HM 5% 4 Ateration Address 11 H	NEGATION FILM TO THE DAY OF THE D			010182008 CARBON FILM 1.9K 0HM 52 1	ÚTOZOTÓDO CARBÓN FILM ZUD OMM 52 1				010153001 CORPORTING 15K 0HM 52 1	CARBON FILM 510 OHH 522 1	CARBON FILM SI OHM 522 3	180 0HN 52% 1	CARBON FILM 18K OHM 52 1	CARBON FILM 3.3K UHM 5% 1	CARBON FILM 4.7K DHM 5% 1	CARBON FILM 4.7K OHM 3%				CARBUN FILM 32 DHM 52 1	METAL FILM 150K OHM 12 1	CARBON FILM 150K OHM 5% 1	CARBON FILM IK OHM 52 8	METAL FILM 5.0K OHM 32 3	CARBON FILM 1.3K OHM 5% 1	RETAL FILM 2.7K OHM 1% 1					CARBUN FILM 2.2K OHH 52 1	0102006 0408004 FILM 10K UHM 52	0103006 CARBON FILM 10K 0HM 52 1	101002 CARBON FILM 100 0HM 52 1				000101010				FILM VAN DAM AUX VAN	

														>	>	~							>	>			>			>				>	>				. >		2									
Ū I L	0) 1 E		> :	-										7.52	2.2	су СУ) U	-		5.6	1.50	717		4.4			Г. (С	130			2.0			1	1.10	72.1	0	20.00									
280752(4)TH-0	ZSU25ZCS VIA+0		RD EB	100 - 100 - 100 - 100	151585	151538	15397	15397	151588	151588	15597	101566	1S1588	05A27.5Y	05AZ7.5Y	05428.2%		-01000 -01400			10597	10207	U5A25.6X	05AZ5.6X	жD11EB	151556	U5AZ2.4Z	1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -	501000 501000	FD5.1EB	RD13EB	151588	151588	R08.255		000000	05025	05A25 6X	HZ58-2	HZ38-2	2-820H			LF412						9月00日
N d Z	21.2		ZENER Jener	SCHOTIKY	DETECTOR	DETECTOR	SCHDITKY	SCHOTTKY	DETECTOR	DETECTOR	SCHUTTKY	DETECTOR	DETECTOR	ZENER	ZENER	ZENER Netentor	VELECTUR Verfertür	DETENTOR DETENTOR	DETECTOR	ZENER	SCHOTTKY	SCHOTTRY	ZENER	ZENEP	ZENER		ZENEK Souditev		DETECTOR	ZENER	ZENER	DETECTOR	DETECTOR	ZENER	A E T E A T O B O E T E A T O B		ZENER	ZENER	ZENER	ZENER	ZENER								TEANALATER SECO	FILLEI EDIGIOZIE
CONT (D) 3030752005 3030752005	0002020505		31200055004	3110071005	3110006004	3110006004	3110071005	3110071005	3110006004	311006004	3110071005	3110006004	311006004	3120027018	3120027018	3120028010 7110002004	211000004 2110006004	3114006004	3110006004	312003008	3110071005	3110071005	3120057017	3120057017	3120055004	3110005000	311002100215	3110066004	3110006004	3120024003	3120054002	3110006004	3110006004	6170078001 2 0 2007002	212,0020007 251,006004	3110006004	3120057017	3120057017	3123080003	3120081005	3120081005		GRATED CIRCUITS-	3220076000	3220075008	2000C7007225	2020142002	3220146005	7040074007	
<pre>< T-3570 031 030</pre>	^	010013-	200	PQ	Ū4	05	De	52	ŖŊ	6.0	010	51	2	M -			200	Û Ĥ	510	020	021	022	023	024	025	720	0.23	030	031	250	033	₹ M O	5.5	5 10			040	041	042 042	D43	[)44		Щ	2	88	501			10.9	1 L C
00 202	200 000	1000 - 1000 1000 - 1000 1000 - 1000	500V 500V	254	007	502	50V	564	52A	250	500		50V	200 200	202																																			
0 7 9 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1	0	700 °	20	0%	10% 5				2.0%	2.0%		2.02					2502	2502	2507	25.07	250V													5									0- H -0				⊳ ×	0	1-121	
47pF 0.47uF	0.10F	L , 14 14 14 14 14		22 uF	47pF	0.1UF	0.¦uF	ΰ. 01 υ F	1005	1 0 la F	0.10 10		0.10F				5-50pF	3.3-18pF	4-41)pF	5-5ÙpF	2.8-10pF			2502362-0	00000000000000000000000000000000000000			2502362-0	0.502705-0	2501260	2501260	28A711		2001-01-01-0 2001-2220	2501260	258711	254711	SONT I	2301260	2503596-6	2SA1402-E		259495(0)H	20月711 201402 1		20000000000000000000000000000000000000	2501015-0	25A1 015-0	11~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	· · · · · · · · · · · · · · · · · · ·
AJČA Plastic Film	-	TENER TENED CARD	n[02	έμες ΤΑύμΥΤΙΟ	MICA	CERAMIC	CERAMIC	CERANIC	ELECTROLYTIC	ELECTROLYTIC	CERANIC Titation	ELEUTRULYIJU Ordomio		СЕКНИТС ОБРАНІС			GERAMIC	CERPHIC	CERANIC	JEKAMIC	CERAMIC					ú 7 ú	1	NPX	スルマ	141744	212	TNP TOT			247	ú Zú	0.Z Q		NFN	NPN	ANA	12L	ditd.				NPN	d No.	5-11F	
CONT C) 2+20470016 2∰10470016	2030016046	>公司令官員士を立つた ふうえきの自己を	2-20330001	2240220006			2050016006	2010103005	2240100006			2249100010402		0 · 1	0	E CAPACITORS-	2910023004							こころがいかい ひゅうせんりょう	701032010202	2000-0-000 2000-0-000	3011145006	3032562004	3032705008	3031260000	3031266000	5010711047 707464600	ちつつ ひょう いっつ つう つう つう しょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひ	2021260000	3031260000	30102110007	3010711007	たのロシャントのよのり	3031260000	3033546005	3011402000	301021100	3010445007	このものできたのでは、	いっているのでのです。	3050372909	3031815009	3011015003	3010495007	* * * *
0																-VARIABL							97 I 197																											

ESCRIPTION			15 OHH SX	5.6 OHM 52 1/4	5.6 UHM 52 1/4	THE TALE OF A DEAD AND THE TALE OF A DEAD AND A DEAD AN		100 OHN 12 1/2	10 UHM 52 1/	10 0H1 0%				3.9K DHM 5% 1	HO 01	T NHU HI	6.8X OHD 5X	IK OHA SX 1	4.7K 0HM 52 1	33K OHM 5K	33K 0HM 5%)	390 OHM	PICK OHM	2.2K 0HM	510 OAN 12 1	510 OHM	1.3K OHB 1% 1	CID OHS	510 0HH 5K 31	LOK OHN 5X	SK OHM SK						130 CHM 12 1	130		いた 1000 100 1000 1	C CIE CIE	1 11 11 11 11 11 11 11 11 11 11 11 11 1	イマー 四王国 シャ	1 XI MAD 21	NT NEO ODD		30		39	39 OHN 17				ヨサント パッ たまつ メロト エゴビロ とつのどれ
R PT NO. D	i i	04/0005 0150005	0150005	0569002	0569002		000000	000000	01 0 0 0 0 0 0	0100000	0104008	2100004	0822008	10392009	1009004	1001008	10682005	10102004	10472007	0333003	10333003	10391007	10222004	10222004	510004	15100004	11301000	10511001	10511661	0222004	1 1301 000	10241008	1022004		12000002	12001004	11300008	11300008	11001008	18209004	18209004	1470002	000000	14709000	133000000	13009006	13009006	1120004	3909002	00000000	10152005	10152004	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10103000
	(1-357)	N M N M X X	т М	R32	с В С	2 10 4 10 4 10	14 10 10 10 10	583	R3ë	5 M M	4 U	040	2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	844	R45	R46	R47	R43	R49	R50	R51	R52	R53	R54	255	R56	R57	R58	902 1	R60	(9) (9)	20	202		1 × 2 0	+ C X	R72	£73	天74	R75	Kr.√6.	R77	τ L L	R79	R30	R81	K82	R83	88 4				or	0,002
																												ያለታ	- 19 M	ME. 21	-44 M		1/45		ドウイト	ドノキロ	MOPI	1.04 W	1.144	1.44	ドマイ	1/41	11 サノー	14N	1.1.414	1/410	ロセント	لاً! لم ¹ ا	1/41/	1.741		a chaile and a cha		D+
					+ € 10<					207	200		5															22	~	.;; IO I	X : In t	n -	< N - 10	2 X 2 W	5	25	52	22	22	20	5%	ŝ	λ G	22	22	20	50	20	28		្រុ	:	1 2 5 4	20
	1	(741) (741)	SN72710N	74L500	UPC78L 05	1L 082	TLU21CP			0.47UH	I		-		BONHA DBAR,			T - 357 0E			310-99-120											A SK CLT				¥					HU X-		Ă											POX DIE
DESCRIPTION		UP PAR	8H3N1	TTL	REGULATOR		OP AMP			COJL	(0]L				R0768Y 0-540						SOČKET					AMPLIFIER BUARD T-3571		CARBON FILM	METAL FILH		CARBON FILM		NETRE FLER Narron Fler		CARBON FILM	CHRBON FILM	CARBON FILM				CARBON FILM	CARBON FILM												
PT NO												395 01 091 04 296 01 09007			4000545008			5903570024		10	4323019021					РОШЕЯ ЗИРРГҮ, АМРГ		0390005	4990005	1010104008	01034UB	1007070 000000	1 / U / V / S	0223006	1010332001	0912009	0223006	0912009	0472003	0476003	0102004	1010102004	0122000	0.00.2.0	0220000	0220000	181006	41008	40003	20004	* 62604	0101020	0101010	110103008
LDR	CO. 1400	3220	321.0	3260	3220		322.0			3960	3960	796.0	2		4 Ù Û		EDARD-			NON	5					30	1STORS-	101	ц М	101	101	2 !	2		j.	101	101	101	101	101	101	101	101	5	101	191	1010	1010	1010		0.10	101		


	254		2000	5000	2007	5000	>000		י י שי רי (200	200	100	254	250	SUV	50V																																					
	20%		202	1.02	107		2 S S S S S S S S S S S S S S S S S S S			10			2.02	2.02					2500							1	210	0-11				M-U	1 m -0	0-W						JTM-0			•						i a	110			
	2.2 1	2 2UF	1 LL 1 - 0 1 - 0 1 - 0	32pF	32pF 4 2			1000	1 10 10 10	1000 L	U.1 J	U. 10F	1001	1 00uF	1 U U U D F	1000PF			2.3~10pF			2001260 2022	111462	2001200	1040000	00000000	250372727U				250382	25849540 M	2803720003	25A495(C)1	2501815-7	2501015-1	2501815-7	25A1015-Y	0.17261	258-1920 E)]		016 .00			00000	000000		151588	808 OFF	RD12EB	151588	131588	161568
DESCRIPTION	ELECTROLYTIC ELECTROLYTIC	ELECIKULYI1U Mira		MICA	AICA				ELECTROLYIIC	ELECTROLYTIC	CERAMIC	OERAMIC	ELECTROLYTIC	ELECTROLYTIC	CERANIC	ω.			CERANIC						2 1			24		1	Z L	i, Zi	ZUZ	0 M D	14N	970	Z OZ	L Z		Z Z		76 11 11 1	LETENTID DETRITID			Set Fille	DETECTOR	DETECTOR	ZENER	ZEMER	DETECTOR	GETECTOR	DETECTOR
LDR PT NO.	CONT 'D) 2240229004 2340229004	2240%2%047 / / / / / / / / / / / / / / / / / / /	2120560008	2120620008	2120920008	2120100004	2120390009	2110101009	2320048004	2320049004	2090016006	209001606	2240101008	2240101008	2010102003	2010102003		E CAFACI	2910013006	101000	01080- 2027522000	2010212000	2021260000	201020212002	2020471000 2030471004	2007-2007-2007 2007-2007-2007-2007-2007-			2011402000	303098700F	3030382008	3010455007	3 03 037 2 0 05	3010495007	3031815018	3011015012	3031315015	3011015012	20212/20202	LANCENTOS			20100000000000000000000000000000000000		2110000000	3110006004	3110006004	3110006004	3120028001	3120059002	3110005004	3110006004	3110006004
Ž	in M I N N P	0 1 0 10	0.35 0.35	0.36 115	247	0 00 0 0 0 0	C40	044	C42	C43	C44	045 0	-9-1 	043	0.4 10	シャン		-VARIABL	VC1	- 1 0 2 2 0 E -	0 E	- 1)		רי א <u>י</u>	r un Film	2.4	0 F. 3 12			010 010		012	613	014	010 0	916	017	200		1.75		1000	53	17	200	5	2	20	еq	60	010	011	210
																																								•						-							-
	114 - 11 114 - 11	E) E 1' 1	U + -/ (1			14 Y -	1/54	0.47	オノチリ	1/44	34.1												500%	500	5000	6.30	5002	630	634	50%	205	101	524	202	201	200		100	250			202	200	200	250	25%	254	5004	2004	5000	20%	23 N
	<u>× :</u>		~	× :	2 N - 1	20	×	×-	1 1	ž	ž	2		i	234	J W E		2007				3			20%		20.4	1 02	1 02	1 02	102	1.02	2.02	202	202	2.0.2				2.0.2	201	ション	2	202		2.0X	14 14 14	202	1 0%	1.02	1.02		
	HHO XC P	i ĝ	HO XRI		K C							MHO X0			04M 20%	0HM 207			TUK UHE ZUZ EK OHE ZUZ	0.02 MH0	0HM 202			56DF	22 0 DF	505	0.1 uF	150F			15 UpF	13005	1005	1 0 LF	22 JF	22uf	0.0145	₽.		2000 2000		2015	101.0	5.0	0.10L	22 LE	3305	33 uF	1 0pF	33pF	27pF	0.JUF	0 tuF
DESCRIPTION	МЕТАЦ ЕЛЦМ МЕТАЦ ЕЛЦМ	F T DI	ETAL	ά H H H	р Р (ARB	ETAI	ETAL	EJAL	ETAL	ETA	ETAI			ш	աւ	uι	ມເ			ıц	5						401E	PLASTIC FIL																					d Om E			
LDR PT No.	0NT D) 313301002 313301002		1311802002											LE RESISIONS-	1711004006	311004006 311664666			1211014125	1711004125	1711004015		1085-	2120560008	2110221009	2120050005	2610104605	212015009	2610104005	2610104005	211015104	2110181003	224010006	224010006	2240220006	224022006	201010102002		2000100100000	224000005	20202555000 2020256006	20000000000000000000000000000000000000	2092016006	2.0 4 8 9 9 0 0 0 C K	2090016066	2240220066	2000230003	2240330003	212010004	2120330001	2120270005	2090016006	20900161006
	ñ. V2												Ċ	n n					0 4 2 0 2 1				L L H																														

- 33-LFG-1310

NO.	۲ ۵.	DESCRIPTION		
1-3571	CONT 'D'		1 1 1 1 1 1 1 1 1 1 1 1 1	
-	311006004	TECTO	n F	
~	2	TEC	251538 251538	
_	-	Щ	Ĵ,	
-	2	TEC 7	Ð	
1-10	0006	DETECTOR	151588	
		1011	3	
-	ເບິ່ນອີ	TECT	ŝ	
4	3110006004	TECT	151588	
\sim	-	TECT	58	
\sim	-	TECT	38	
्य	10006	Ш	ŝ	
N	2002900	ZENER	Э. П	>
	0	ZENER	9.1	2 0
 N 	-0	TECT	0)	
\sim	000	DETECTOR	58	
	2	BRIDGE RECTIFIER	U- 02	
LINTEGRO	tED			
5	3220075008		11411	
108	22007500	OF AMP	LF413	
103	21149501	_	MC1496L	
-00105-				
	97015900	COIL		201
4	ትትሮ	COIL	но, Б	1.0.1
رى م	97015900	COIL	H1.5.1	1.02
	- 6			
	0- 5903571026		1-35718	
))	

.

- Take four screws, holding cord wrappers, to remove the Top and Bottom cover.

PLEASE VISIT OUR STORE FOR EVEN MORE GREAT STUFF!

WWW.EVERYTHING4LESSSTORE.COM

COPYRIGHT NOTICE

ALL MATERIALS INCLUDING CD/DVD AND PDF FILES ARE COPYRIGHTED WWW.EVERYTHING4LESSSTORE.COM VON WALTHOUR PRODUCTIONS AND MAY NOT BE REPRODUCED, COPIED OR RESOLD UNDER ANY CIRCUMSTANCES. YOU MAY HOWEVER MAKE A COPY FOR YOUR OWN PERSONAL BACKUP. MATERIALS ARE FOR PERSONAL USE ONLY.

IF YOU PURCHASED THIS FROM ANYWHERE BUT FROM US PLEASE NOTIFY US IMMEDIATELY SO THAT WE MAY CHECK IF YOU PURCHASED FROM AN AUTHORIZED RESELLER SO WE CAN LET YOU KNOW IF YOU NEED TO RETURN FOR FULL REFUND FROM AN UNAUTHORIZED SELLER.

THANKS AGAIN AND PLEASE TAKE THE TIME TO VISIT OUR STORE.

ATTENTION! EVERYTHING ON SALE NOW!!

THIS PAGE COPYRIGHT VON WALTHOUR PRODUCTIONS WWW.EVERYTHING4LESSSTORE.COM