TELEVISION SERVICE MANUAL

MODEL PT1
CHASSIS 49-1

"MINISCOPE 11"

MODEL PT2

CHASSIS 49-2

"MINISCOPE 9"

SPECIFICATIONS.

Transistors	-33
Diodes	-14
Deflection	-90° Magnetic
Focus	- Electrostatic, Adjustable
Picture Tube	- PT1:11" Type A28-14W
	PT2: $9^{\prime \prime}$ Type $9 W P 4$
Audio Output	-500 mW
Loudspeaker	$-5^{\prime \prime} \times 3^{\prime \prime}$ (see Parts List) Auxiliary output jack at rear.
Aerial	- Inbuilt 1 metre Telescopic Aerial plus external aerial terminals and socket (300 Ohm).
	See Note 1.

NOTE 1
Aerial terminals, paralleled with a 2-pin socket are fitted on the rear panel. The socket is principally for convenience in connecting the inbuilt telescopic aerial but, in difficult reception areas when using an external aerial, experiment may show that if the inbuilt aerial is also connected, reception is improved on a particular channel. Check that it does not impair reception on other channels.

NOTE 2

A slide switch at the rear of the receiver covers the 2-pin 'Battery' socket when the switch is moved to reveal the 3-pin 'Mains' socket, and vice versa.

If the wrong polarity d.c. connection is made, the receiver will not operate. If the wrong polarity d.c. connection is made, and the receiver chassis is shorted to a car chassis wired with a negative earth system, the fuse will blow. If the correct polarity d.c. connection is made, and the receiver is shorted to a car chassis wired with a positive earth system, the fuse will blow.

GENERAL DESCRIPTION

Production Changes

Both models incorporate the same basic printed wiring board (10-8378) which has been released under four different Issue Numbers - 2, 3, 8 \& 9.

Issue 2 and 3 boards were used in Model PT1 only.
Both boards are identical except for a minor conductor pattern change to accommodate R41A (15K) which was wired on conductor side of Issue 2 board.

Issue 2 boards were wired to Issue 1 circuit for a short run in early production. The remainder of Issue 2 boards were wired to Issue 2 circuit with R41A on underside.

Issue 3 boards were wired to Issue 2 circuit and contain the pattern modification to place R41A on the component side.

Issue 8 boards were introduced as a common board for Models PT1 and PT2. They are wired in accordance with Issue 3 circuit diagram.

Model PT1 may use either Philips or M.S.P. deflection components. Model PT2 used mainly M.S.P. deflection components. The M.S.P. yoke must be used on 9' picture tubes.

The conductor pattern was changed in the H.O.T. area (layout change only), the frame oscillator area (C70A added for improved interlace) and near the Focus preset (picture tube grid 2 preset R84 added).

The 10-9635 printed wiring board socket for the picture tube was employed to mount the three spark gaps SG1, SG2, SG3 and the 1.5 K resistor R89 for improved protection from picture tube flashovers.

Issue 9 boards were introduced as a common board for Models PT1, PT2 and PT3.
It also contains modifications for the additional components required for Anodeon semiconductor kits (refer Service Notes No. 43). These components were previously connected on the conductor side of Issue 8 boards.

ERRATA: On the conductor pattern of Issue 2 and early production Issue 9 boards, the collector ' c ' and emitter ' e ' designations of TR28 were shown reversed. The emitter is connected to the ' L ' shaped conductor pattern.

CHASSIS ACCESS

(a) Completely remove the screw (2 screws on PT2) from the carrying handle.
(b) Pull off the channel change and fine tuning knobs. Also remove control knobs on PT2.
(c) Lay the receiver on the tube face, suitably protecting this and the escutcheon from abrasions. Remove four screws from the back. Remove aerial plug.
(d) Lift off the back and the centre wrap-around.
(e) Lay the receiver on the side housing the loudspeaker. Remove two screws below the bakelite panel at the rear.
(f) The chassis may now be swung out for servicing; if necessary, easing the two pivot screws slightly.

CAUTION: When re-assembling, ensure that the two chassis pivot screws are tight and do NOT forget to replace the screw(s) in the carrying handle otherwise, when the receiver is lifted, the handle may be damaged.

PICTURE TUBE REPLACEMENT.

Follow procedure for chassis access then, having disconnected appropriate leads:-
(a) Pull off control knobs (PT1 only).
(b) Remove four screws securing front escutcheon (accessible from the rear).
(c) Remove four screws from picture tube mounting flange and take out tube.
(d) Centre new tube in position, checking that the escutcheon locates squarely on its guide pins.

CAUTION: Discharge the picture tube before handling.

DY51 REPLACEMENT.

Model PT1, from July 1969 production, and all PT2 receivers are fitted with a selenium E.H.T. rectifier type TV11-S or TV11-K in lieu of the valve rectifier type DY51 used in early production. It is recommended that the selenium rectifier be used for replacement purposes. The rectifier, together with mounting parts and installation instructions are available in kit form, Part No. 90-9658.

CONTROLS.

Main Controls : Off/Volume, Contrast, Brilliance, Channel Change, Fine Tuning, Horizontal Hold, Vertical Hold (at rear).

Externally : Horizontal Linearity/Width, Vertical Linearity, Height, Focus, Pix G2.
Accessible
Presets
Internally : Video Amplifier Bias, Horizontal Sync, Main A.G.C. (I.F.), Tuner A.G.C. (R.F.), H. T. Voltage. Accessible
Presets
REAR

O HEIGHT

R108

EXTERNALLY ACCESSIBLE PRESET CONTROLS view on base of cabinet

NOTE: When adjusting externally accessible preset controls through the holes provided in the base of the cabinet, it is advisable to use a screwdriver made from insulating material to avoid the possibility of short-circuiting adjacent areas, or affecting the tuning in the case of horizontal linearity coil adjustment. A screwdriver with a $1 / 8^{\prime \prime}$ wide blade is ideal for all preset adjustments.

CONTROL ADJUSTMENTS

IMPORTANT

Carry out the following adjustments in the order given below. Always check the H.T. Voltage before servicing.

1. H. T. Voltage : Set contrast and brilliance to maximum. Set tuner to blank channel (dot).

PT1 : Adjust preset R4 for 11.0 volts d.c. on main rail.
PT2 : Adjust preset R4 for 11.5 volts d.c. on main rail.
Note: PT2 requires higher voltage since picture tube has 12 V heater.
2. Horizontal Linearity/Width : The horizontal linearity adjustment should be carried out on a test pattern. Adjust L7 until satisfactory linearity is achieved. This adjustment also has an appreciable effect on scan width and, consequently, may be used to vary the width as required, whilst observing that the linearity remains satisfactory. If width adjustment only is required, adjust the value of C95. Provision is made on the board for adding an additional capacitor to reduce width.
3. Video Amplifier Bias : Set contrast to maximum, set tuner to blank channel (dot) and connect d.c. voltmeter ($20 \mathrm{~K} / \mathrm{V}$ or greater) between TP9 and chassis. Adjust bias preset R57 for meter reading of 30 volts for PT1 or 40 volts for PT2.
4. Main A.G.C. (I.F.) : Set contrast to maximum and set tuner to an operating channel receiving a moderate to strong signal. Connect a C.R.O., switched to d.c. input, to the 10.4 volt supply rail temporarily. Set the C.R.O. to the one volt per centimetre range and adjust the trace to the top line of the graticule. Re-connect the C.R.O. to TR16 collector (board reference L7) and adjust preset R62 so that the sync pulse tips are one volt below the top line of the graticule.

Where no C.R.O. is available, an approximate adjustment using a $20 \mathrm{~K} \Omega / \mathrm{V}$ d.c. voltmeter may be made. This may degrade the noise-immunity characteristic of the receiver but in a given location, if this is not operationally needed, proceed as follows:-

Set contrast to maximum and select a channel receiving a strong signal (to develop A.G.C. voltage). Connect the voltmeter between TR16 collector and chassis and adjust preset R62 for meter to read 7 volts d.c. Slight fluctuations will occur as the video content of the picture changes.
5. Tuner A.G.C. (R.F.) : With contrast and brilliance normal, select an operating channel receiving a medium strength signal. Slowly adjust preset R33 until noise grain appears on the picture. Back off the control approximately 10° from this point.
6. Pix G2 : Preset R84 (on Issue $3 \& 4$ circuit diagrams) controls the grid 2 voltage of the picture tube so that its cut-off voltage, and hence the brilliance range, can be standardised for all tubes. Set contrast to maximum and brilliance to minimum. Select blank channel (dot). Adjust R84 until raster is almost extinguished. Check brilliance range on normal picture. If maximum brilliance is excessive, as characterised by de-focussing in the white areas, back-off R84 slightly. If maximum brilliance is insufficient, advance R84 slightly.
7. Focus: Select blank channel (dot) and, with contrast at maximum and brilliance normal, adjust R88 preset for best overall focus of the raster.
8. Vertical Linearity and Height: Adjust on a test pattern with presets R104 (Board reference G3) and R108 respectively, accessible through the base of the cabinet.
9. Fine Tuning : Tuner Type NT3017. Fine tuning is accomplished by a variable piston-type capacitor shunted across the local oscillator tuning coil. The capacitance is controlled by the movement of a piston which, in turn, is controlled by a lever system. The lever is actuated by cams on the end of the coil turret. These cams are set by the fine tuning knob as follows:-

Press in the fine tuning knob to engage the cam mechanism; turn knob to adjust fine tuning; release knob. Fine tuning is then preset for that channel and will reset itself each time that channel is selected. Note that there is no 'stop' on the fine tuning adjustment.

An overall fine tuning adjustment screw for all channels is provided. If this screw is adjusted, re-seal with 'Grip-Lac' or similar material.

With the exception of the fine tuning adjustment described above, no adjustment should be made to the tuner WITHOUT ADEQUATE ALIGNMENT EQUIPMENT AND EXPERIENCE IN ITS APPLICATION.
10. Horizontal Sync : The receiver should hold sync, when on channel, over the full range of the horizontal hold control, but may lose sync when changing channels if the hold control is at either extremity. In adjusting the horizontal sync preset to obtain these conditions, proceed as follows:-
(a) Gain access to chassis as previously described.
(b) Centre the horizontal hold control.
(c) Short-circuit the collector of TR22 to chassis (to remove sync).
(d) Adjust the core of L5 until the picture 'floats' steadily on the screen.
(e) Remove the short-circuit on TR22 and check that the picture jumps firmly into sync.
11. Vertical Sync : Over a small part of the range of the vertical hold control, the picture should roll slowly downward. Adjust the control just past the point at which the picture locks in. It is immaterial whether or not the picture loses sync at the opposite end (low frequency) of the control range.

POSITION OF TEST POINTS.

Number	Position	Board Reference
1	TR3-C/TR4-B	M15
2	R16/C19	G19
3	T2, pin 9/C21	J17
4	IFT Ib, pin F/C35	D21
5	R39/C38	C20
6	TR13-C/IFT 2b	B17
7	TR15-B/C44	B12
8	TR16-B/L2	L9
9	TR17-C/R79	R9
10	TR28-B/C80	L23

ALIGNMENT PROCEDURES:

INTERCARRIER I.F. AMPLIFIER AND RATIO DETECTOR

Sweep Method
Equipment required.
(a) Sweep Generator $\pm 250 \mathrm{KH}_{\mathrm{z}}$ deviation at $50 \mathrm{H}_{\mathrm{z}}$ rate, centre frequency 5.5 KHz .
(b) Marker Generator which will accurately indicate 5.5 KHz .
(c) CRO.

Procedure
1a. Disconnect the stabilizing capacitor (C21) across the RD diodes (lift jumper at Board Reference F17).

1b. Disconnect the de-emphasis capacitor, C18 (lift jumper at Board Reference L17).
2. Connect the CRO across the diode load resister (TP3 to earth).
3. Connect Sweet Generator to TP1.
4. Unscrew secondary core of Ratio Detector transformer until flush with the end of the former (access through middle hole in top of T2 can).
5. Peak primary core for the curve of Fig. 1, using the Marker Generator to set the limits shown.
6. Connect Sweep Generator to TP8 (BR L8).

7. Tune ICIF 1 to 5.5 MHz as shown in Fig. 1 .

8 Re-connect the stabilizing capacitor C21.
9. Re-connect CRO to TP2 (BR G18). Tune secondary core of Ratio Detector to display a typical 'S' curve centred on $5.5 \mathrm{KHz}^{2}$ as shown in Fig. 2.
9a. Re-connect C18.
10. Remove Sweep Generator and CRO.

Where a $5.5 \mathrm{Mc} / \mathrm{s}$ sweep generator is not available, the transmitted signal, attentuated as required, provides an accurate and convenient method of alignment.

Equipment Required.
(a) A centre-zero VTVM or voltmeter, completely isolated from earth with zero reading adjusted to centre scale by the 'Set Zero' control. In lieu of the centre-zero VTVM or voltmeter, an ordinary voltmeter may be used as explained below. The voltmeter used must be at least 10,000 ohms per volt and preferably higher.
(b) Two resistors approximately 100 K each, matched to within 1% and connected in series.

Procedure

1. Connect the two series 100 K resistors across the electrolytic stabilising capacitor bridging the ratio detector diodes, TP3.
2. Connect the voltmeter, positive to the centre of the 100 K resistors, negative to ground. Unscrew secondary core of ratio detector transformer flush with the can (middle hole in T2 can). With an incoming transmitted signal, peak RD primary and ICIF for maximum reading, attentuating the signal as required to a level below limiting.
3. Re-connect the negative voltmeter lead to the audio output line of the ratio detector at the output end of the de-emphasis network, TP2.
4. Tune secondary for maximum output. This means that the secondary, at this juncture, is tuned to one of the two maxima of the ratio detector voltage curve.
5. Further adjustment of the secondary core, in the correct direction, will cause the ratio detector voltage curve to pass through zero to the other maximum: Therefore, readjust the secondary core, taking note of the maximum positive and maximum negative readings obtainable on the centre-zero voltmeter, until the meter reading is exactly the mean of these maximum positive and maximum negative values. Ideally, these maxima should be equal, depending on the matching of the diodes and 100 K resistors. In the field there may be cases where equality cannot be obtained, and in these cases, ignoring polarity, their numerical values should be within 10% of their average.
6. If the inequality of the maxima readings is too great, check the diodes and/or the 1 K resistors in series with them.

Where no centre-zero voltmeter is available an ordinary voltmeter may be used and, by reversing the test leads as required, the maximum positive and negative readings taken as before, setting the core for the average reading.
When no transmitted signal is available, or in deep fringe areas where the noise level is high and the signal strength fluctuates, an accurate $5.5 \mathrm{Mc} / \mathrm{s}$ signal derived from an FM signal or marker generator may be used.
Feed the signal in at TP8, taking care the input is at low level but sufficient to produce 3 volts across the electrolytic stabilising capacitor when the ICIF's are correctly aligned. This ensures that the limiter is functioning correctly.

5.5 MH_{z} TRAP

Equipment
Signal Generator to provide accurate 5.5 MHz signal, $30 \% \mathrm{AM}$ by 400 or 1000 Hz .
CRO.
High impedance detector probe (see Fig. 7).
Procedure
Connect CRO, via high impedance probe, to TP9 (TR17 collector).
Set Contrast to maximum (clockwise) and Brilliance to minimum (anti-clockwise).
Connect Signal Generator to TP8 (TR16 base).
Feed in strong signal at 5.5 MHz and adjust L3 for minimum amplitude on CRO.

ALTERNATIVE METHOD (USING TRANSMITTED SIGNAL):

Set Contrast to maximum (clockwise).
By-pass the junction of ICIF 1 and C10 (Board Reference M10) to earth with . 0047 uF (approximately) capacitor.
Couple TP9 to TP1 with 100 pF (approximately) capacitor.
Connect DC Voltmeter (20K /V or greater), positive to TP3, negative to earth, on low voltage range (to read less than 1 volt).
Adjust L3 for minimum reading on meter.

VIDEO I.F.

Equipment

(a) Sweep generator capable of providing a deviation of 12 MHz or more at 50 Hz sweep rate, centre frequency 34.75 MHz .
(b) An accurate marker generator for use with the sweep.
(c) CRO with low impedance detector probe. See circuit of probe, (Fig. 7).

Procedure.

1. Set the tuner to the blank channel between channels) and 11.
2. Connect CRO directly to TP9 (BR R9).
3. Connect sweep to TP7 (BR B12).
4. Set Contrast to maximum, Brilliance to minimum and video amp bias to mid-position.
5. Unscrew cores of IFT 1B, L1, IFT 2 \& IFT 3 flush with top of cans.
6. Tune primary and secondary of IFT 4 for the response as in Fig. 3. If necessary, touch up on IFT4 coupling coil (underside). Amplitude of Fig. 3 should be approx. 40 V . p.p.
7. Disable Horizontal Oscillator (earth base of TR 30) (BR R17).
8. Connect Sweep to tuner test point.
9. Connect CRO, via a low impedance detector (Fig. 7) to TP4 and adjust CRO for high sensitivity ($50 \mathrm{mV} / \mathrm{cm}$ or better).
10. Adjust both tuner coils for maximum response at 34.75 MHz , as in Fig. 4, (NOTE: Do NOT subsequently alter the coil near the AGC post, if 'touching up' the alignment).
11. Re-connect CRO, with detector, to TP6 (BR B17).
12. Tune L1 (31.25 MHz Trap) and IFT 1B for the response shown in Fig. 5. (Very slight re-adjustment of IFT 1A, on tuner near IF output lead,

13. Remove detector probe and re-connect CRO to TP9 (BR R9).
14. Remove earth on base of TR30.
15. Adjust IFT 2 and IFT 3 for the response shown in Fig. 6.

ADJACENT CHANNEL TRAPS

These traps are not normally supplied with the receiver but may be supplied on request.

The trap assembly and associated additional components may be inserted where shown on the component layout diagram (position E24 approx.).

The additional components are:-

Coil assembly
Ca and Cb
Ra

CZ320-388
27 pF 5\% NPO Ceramic
5.6 K ½W 10\% carbon.

C32 (12pF) changes to a 15 pF
5% NPO Ceramic when traps are fitted.

Alignment instructions are available on request.

CIRCUIT DESCRIPTION

Circuit Reference: 49-1, 49-2 Issue 4 1.10.69

Regulated Power Supply

The DC output (approx. 18V) from the power rectifier diodes D1 and D2 is fed to the main H.T. rail via the series regulator transistor TR1, the conduction of which is controlled by the error amplifier TR2 so that the H.T. rail is stabilised at 11 V (11.5V on PT2).

The purpose of the regulated supply is to prevent changes in H.T. voltage due to load current and/or mains voltage variations. If, for example, the output voltage tends to rise due to one of the above causes, the emitter of the error amplifier TR2 rises by the same amount since it is connected to the H.T. rail via the 6.2 V zener diode D3. The base voltage of TR2 also rises, but to a lesser extent due to the voltage divider R3, 4 and 5 . This means that the base-toemitter voltage of TR1 decreases, producing a lower conduction in TR2. This decreases the collector current of TR2 thus allowing the base-to-emitter voltage of TR1 to decrease which in turn lowers the conduction of TR1 and restores the H.T. to its previous level.

The operating point of TR2, and thus the H.T. level, is controlled by the preset R4 in the TR2 base bias divider.
If the H.T. rail is short-circuited, both base and emitter of TR2 become equal at OV and therefore TR2 is cut-off. With zero base current in TR1, the base is at emitter potential and therefore TR1 is also cut-off. Upon removal of the short-circuit, the H.T. rail returns to normal.

The normal H.T. current is approximately 1.25 amps depending on brightness and volume settings. Under slight overload conditions, the H.T. voltage is maintained at 11 V by the regulator, but should the overload become excessive (but not actually a short-circuit), the H.T. current could exceed 2 amps and the fuse F1 would blow to protect the regulator transistors and power rectifier diodes.

Since the regulator is driven from the output side only, the 68 ohm resister R1 is included to enable the regulator to start upon initial switch-on.

Without this resistor, the power supply electrolytic capacitors would simulate a short-circuit condition upon initial switch-on, and no output voltage would be developed. Bleed current through the resistor charges the electrolytics and produces sufficient drive to operate the regulator.

Capacitor C4 filters out any ripples on the base of TR2 and increases the gain of the error amp at ripple frequencies. Resistor R8 (220 ohms) limits dissipation in TR2.

Intercarrier I.F.

The I.C.I.F. comprises two direct coupled common emitter stages driving a conventional unbalanced ratio detector circuit. D.C. feedback from the emitter of the limiter TR4 to the base of amplifier TR3 maintains bias stability of both stages.

De-emphasis is provided by R16 and C18.

Audio Output

Audio output is provided by a conventional four transistor complementary symmetry amplifier comprising transistors TR5, 6, 7 and 8 . Output is approximately 500 mW into 15 ohm speaker.

The audio signal from the volume control R17 is amplified by TR5 and then direct-coupled to the driver stage TR6 which drives the output pair TR7 and TR8. Both d.c. and a.c. feedback is provided by the network R25, R25 and C25. The driver collector load resistor R32 is bootstrapped by connecting it back to the negative side of the speaker coupling capacitor C26.

Vision I.F.
The vision I.F. amplifier comprises three common emitter tuned stages TR13, TR14 and TR15. The first stage
employs a special transistor in which a gain reduction is achieved by increasing the collector current which is controlled by the forward A.G.C. voltage applied to the base. Transistor TR33 senses the voltage drop across TR13 collector load resistor R42 and applies a proportional positive-going A.G.C. to the tuner. Preset R33 sets the emitter voltage of TR33 so that the correct tuner A.G.C. delay can be obtained. The input bandpass circuit is a bottom capacitance coupled network comprising IFT1A (in tuner), IFT1B, the I.F. cable capacitance and C34. The $31.25 \mathrm{Mc} / \mathrm{s}$ sound step is provided by L1, C32 and C33.

Adjacent channel traps are not normally fitted; however provision is made on the printed circuit board for their addition if required. See instructions under heading "Adjacent Channel Traps". The interstage coupling circuits IFT2 and IFT3 are single tuned.

The video detector assembly comprising IFT4, D7 and the filter network is contained in a two-compartment can. Additional filtering is provided externally by L2. The detector diode is connected so that the composite video output signal is negative-going.

Video Amplifier

A two stage d.c. coupled video amplifier is used, comprising TR16 and TR17. The first stage is a phase splitter wherein the output stage is driven from the low impedance emitter circuit via the contrast control R71 and the $5.5 \mathrm{Mc} / \mathrm{s}$ trap L3. The output from the collector circuit of TR15 (sync positive) is used to drive the sync separator TR22 and A.G.C. keying stage TR20. The bias control R57 is provided to compensate for spreads in component tolerances so that the correct white level can be obtained. The function of diode D9 is described under the heading "Sync Separator and Noise Gate". The 5.5 MHz intercarrier sound signal is extracted from the emitter of TR16 by I.C.I.F. 1. The choke L2a provides additional filtering of unwanted vision I.F. harmonics.

The video amplifier output stage TR17 is connected to the cathode of the picture tube via the R-C network R78, R79, R80 and C63. The 1.5 K resistor R89 (not included in early models) provides protection from picture tube flashovers emanating from the cathode.

The overall voltage gain of the video amplifier (at max. contrast) is approximately 33 times (30dB) as illustrated by the circuit waveforms (C) and (F).

A.G.C. Keying and Amplifier

Composite video signal from the collector of TR16 is applied to the base of the keying stage TR20 which conducts when the level of the sync tips exceeds the emitter voltage set by the A.G.C. preset R62. The positive-going keying pulse, derived from a separate winding on the horizontal output transformer, is applied to the collector of TR20. The other end of the keying pulse winding is a.c. bypassed to earth by C53. It follows, therefore, that TR20 can only conduct when both the keying pulse and sync tips are coincident. When TR20 conducts, it becomes, in effect, a switch which partially a.c. grounds the positive-going end of the keying pulse winding thus developing a negative d.c. voltage across C53 proportional to the degree of conduction of TR20.

The negative voltage across C53 is applied to the base of the amplifier TR19 which amplifies the voltage and inverts it to provide the positive forward A.G.C. applied to the gain-controlled 1st vision I.F. amplifier TR13. Diode D8 prevents the collector-base-diode of TR20 becoming forward biased during the time interval between keying pulses. The A.G.C. time constant is mainly established by C53 and R55.

The R.F. A.G.C. system is described under the heading "Vision I.F."

Waveform "B"

The waveform, as shown, is that of the maximum excursion of the flyback keying pulse. This will be seen when a T.V. carrier wave is being received, without picture modulation. Under other operating conditions, the waveform may be widely different. On a blank channel, for example, the waveform may appear to be of an integrated shape, sloping from the top end of one keying pulse to the bottom of the next pulse but this shape partly depends upon the input impedance of the CRO in use. On a strong signal channel, video information will be present on the waveform below the pulse cut-off level, but the accuracy of its presentation may also depend upon the CRO input impedance.

Sync Separator and Noise Gate

Composite video signal derived from the collector of TR16 is applied to the base of the sync separator TR22 via C57. The noise gate TR21 is connected as a switch between the emitter of TR22 and earth. Under noise-free
operating conditions, TR21 is held into saturation by bias current via R56 and from the A.G.C. line via R53 and therefore it has no effect on the operation of TR22. TR22 is biased so that it conducts only for the duration of the sync pulse tips. The resulting sync output is fed to the horizontal sync phase splitter TR28 via C78, and to the vertical sync amplifier TR23 via the integration network R113, R114, R115, C76 and C77.

The noise diode D9 is biased by R63 and R64 so that it conducts only on noise pulses which exceed the sync pulse tip level of the composite video signal at the base of TR16. In this event, the noise pulses are coupled via C59 to the base of the noise gate TR21. Since the noise pulses are negative-going, they will cut off TR21 whilst thev are present. This in turn cuts off the sync separator TR21 and A.G.C. Keyer TR20 so that sync and A.G.C. are gated out for the duration of the noise pulses. The high stability of the vertical and horizontai time bases ensures that synchronisation is minimally affected during interference noise. Under weak signal conditions, the A.G.C. level is lower and therefore the bias current of TR21 through R53 is also lower which increases the sensitivity of the noise gate.

Vertical Deflection

Vertical sync pulses from the integrator are inverted by TR23 and then coupled to the base of TR25 via C71. TR25 and TR24 form an emitter-coupled multivibrator in which the fundamental frequency (with no sync input) is determined mainly by the time-constant of C71, R102 and the resistors in the vertical hold network.

The sawtooth output at the collector of TR25 is direct-coupled to the base of the driver transistor TR26 which is connected as an emitter follower stage. Two feedback loops are employed to provide linearity correction. Variable positive feedback is applied from the emitter of TR20 via R104, R105 and C74 and fixed negative feedback from the collector of TR27 via R111 to provide the required amount of symmetrical 'S' correction. In some early models a preset control was connected in series with R111.

The output from the emitter of TR26 is d.c. coupled via the height preset R108 to the base of the class ' A ' vertical output amplifier TR27. The series connected vertical deflection coils in the yoke are choke-capacitance coupled to TR27 collector via L4 and C75.

Horizontal A.F.C.

Sync pulses are coupled to the base of the phase splitter TR28 producing two symmetrical outputs of opposite phase which are connected to the discriminator diodes D10 and D11. The reference sawtooth waveform is derived from the horizontal output transformer and fed via the integrating network R123, C83 to the junction of the discriminator diodes. Horizontal phasing correction is effected by R84. The d.c. voltage developed by the discriminator is filtered by the network R127, R131, C85 and C86 and coupled to the base of the reactance transistor TR29. The capacitive reactance of TR29 (which is effectively connected in parallel with C89) is therefore dependent on the amplitude of the discriminator d.c. output which, in turn, is determined by the phase-relationship of the reference pulse to the incoming sync pulse. The discriminator output is superimposed on a d.c. bias provided by the horizontal hold control R124.

For example, should the horizontal oscillator frequency tend to drift low, the reference pulse would lag behind the incoming sync pulse. The discriminator d.c. output would decrease thereby lowering the conductance of the reactance transistor. This would reduce the effective capacitance of the stage and raise the operating frequency of the oscillator, bringing it back into sync.

Horizontal Oscillator and Driver

The horizontal oscillator TR30 is a sine-wave L.C. oscillator in which the free-running frequency is preset by adjustment of the oscillator coil slug.

The pulse output developed across the IK ohm collector resistor (R137) of the oscillator is coupled to the driver stage via the pulse-shaping network R136, R138 and C91 for switching the driver transistor TR31.

The driver transistor operates in a non-simultaneous mode with respect to the output transistor (TR32) i.e. when TR31 is bottomed; a positive pulse is fed to the base of the output transistor, cutting off this transistor. The energy stored in the inductance of the driver transformer T3, during the time the driver transistor conducts, provides the base current of the output transistor during the scan period. The supply rail for the phase-splitter, reactance stage, oscillator and driver is de-coupled from the main 11V supply rail by R140 and C93.

Horizontal Output and E.H.T. Generation

The output transistor TR32 is driven into conduction by the driver stage producing a sawtooth current in the
deflection coils to form the second half of the horizontal scanning line. At the end of the scan period TR32 is cut off by the driving waveform and the parallel resonant circuit comprising yoke and flyback tuning capacitor C98 produces one half cycle of oscillation to provide the line flyback. At this stage the flyback voltage reaches the supply voltage and the efficiency diode D12 conducts, producing a sawtooth current in the deflection coils to form the first half of the scanning line.

Coupling capacitor C95, as well as preventing d.c. from flowing through the deflection coils, provides the 'S' correction of the deflection current. Protection of the output transistor against damage caused by arcing of the picture tube and the E.H.T. rectifier is provided by the resistors R142 and R143.

The 10 KV E.H.T., 100 V video amplifier supply and 390 V picture tube voltage supply are generated by rectification of pulse waveforms derived from secondary windings on the horizontal output transformer T4.

Picture Tube Circuits

The d.c. voltage supply for the picture tube grids is obtained from the 390 V auxiliary supply generated by the horizontal output stage as described in the previous section.

Horizontal retrace blanking is provided by C65 from the horizontal output transformer.
Frame flyback suppression is achieved by clamping the Pix tube grid to ground during the flyback period via the blanking transistor TR18 which is driven into saturation by the positive pulse obtained from the frame multivibrator.

Preset R84 provides control over the grid 2 voltage of the picture tube so that the cut-off point (and hence the brilliance range) of all tubes can be held constant. See also "Control Adjustments".

Focus adjustment is by preset R88.

Spark gaps SG1, SG2 and SG3 are fitted to the grids of the picture tube to absorb the bulk of any picture tube flashover voltages appearing on these grids.

R1	Speaker Panel	R72	H8
R2	Speaker Panel	R74	R12
R3	Speaker Panel	R75	J7
R4	Speaker Panel	R77	09
R5	Speaker Panel	R78	R4
R6	C8	R79	T9
R7	Speaker Panel	R80	S4
R8	Speaker Panel	R81	V1
R10	N13	R82	Control Panel
R11	M13	R83	W_{2}
R12	L13	R84	W4
R13	Part of T2	R85	22
R14	L51	R86	Y2
R15	J14	R87	W2
R16	G18	R88	U5
R 17	Control Panel	R89	Pix Tube Socket
R18	Part of T2	R92	G7
R19	Part of T2	R93	G7
R20	Part of T2	R94	J2
R22	J21	R95	H2
R23	G20	R96	E7
R24	G22	R97	M25
R25	H22	R98	N25
R26	J21	R99	J4
R27	K21	R100	K3
R28	$\mathrm{H}_{2} 3$	R101	L2
R29	H24	R102	F6
R30	K24	R103	E5
R31	H24	R104	G2
R32	G24	R105	F3
R33	Tuner Panel	R108	C6
R33A	Tuner Panel (PT2 only)	R109	C7
R34	Tuner	R110	A8
R35	Tuner Panel	R111	B2
R36	Tuner Panel	R112	B4
R37	Tuner Panel	R113	G5
R38	E21	R114	M2
R39	C20	R115	N2
R40	C19	R120	K22
R41	B17	R121	L23
R41A	D17	R122	M23
R42	C16	R123	R22
R43	A16	R124	R25
R44	B15	R125	R25
R45	C14	R126	R24
R46	D15	R127	P22
R47	A13	R128	P23
R48	D12	R129	P22
R49	D11	R130	R21
R50	Part of I.F.T. 4	R131	M21
R51	E12	R132	N21
R52	E17	R133	P20
R53	P6	R134	M18
R54	F18	R135	R17
R55	F20	R136	S15
R56	M6	R137	015
R57	G13	R138	S14
$R 58$	K11	R139	T12
R59	K12	R140	S20
R60	L10	R141	Y13
R61	K7	R142	$\times 24$
R62	L4	R143	$\times 25$
R63	N8	R145	Base of Aerial
R64	P8		
R65	R2		
R67	Q4		
R68	P2		
R69	K7		
R70	L11		
R71	Control Panel		

c1)	Speaker Panel PT1	c60	L19	TR18	T2
c2)	Control Panel PT2	C61	09	TR19	E19
c3	Speaker Panel	c62	R8	TR20	J6
C4	Speaker Panel	c63	S8	TR21	N5
C5	Speaker Panel	C65	W17	TR22	P3
				TR23	F5
C6	Speaker Panel	C66	Part of I.F.T. 4	TR24	J3
C7	C10	C69	J5	TR26	D4
c10	M11	c70	L1	TR27	(Board Surround A5 - PT1
C11	M13	C70A	J4		(Control Panel - PT2
c12	M11	с708	K3	TR28	L23
				TR29	020
C13	L14	C71	G4	TR30	R17
C14	K14	C72	F7	TR31	S12
C15	Part of T2	C73	E2	TR32 TR33	
C16	G16	C74	E1		
C17	Part of T2	C74A	E3	IFT 1a	In Tuner
				IFT 1b	C22
C18	J18		(Board Surround PT1	IFT 2	B18
C19	H19	C75	(Control Panel PT2	IFT 3	C13
c20	Part of T2	C76	L2	IFT 4	G9
C21	Part of 72	C77	N1	ICIF 1	P11
C24	H21	C78	L21	ICIF	
		C80	L20	SG1	Pix Tube Socket
C25	F23			SG2	Pix Tube Socket
C25A	K25	C81	N22	SG3	Pix Tube Socket
C25B	G23	C82	M23		
C26	F24	C83	R24	SW2	Rear Panel
C28	Tuner Panel	C84	S22	F1	Rear Panel
		C85	L18		Rear Panel
C29	Tuner Panel			Phone	
C30	Tuner	C86	M20	Jack:	Rear Panel
C31	Tuner	C87	N20		
C31A	Tuner Panel	C88	021	D1	(Speaker Panel PT1
C32	B25	C89	L18	D2	(Control Panel PT2
		C90	S17	D3	Speaker Panel
C33	A23			D4	Part of T2
C34	C25	C91	R14	D5	Part of T2
C35	D21	C91A	R12		
C36	B21	C92	Y21	D7	Part of I.F.T. 4
C37	A20	C93	Q13	D8	K6
		$\mathrm{C95}$	V9	D9	M9
C38	D19			D10	P24
C39	C19	C96	215	D11	P24
C40	D12	C98	218	D12	219
C41	C16	C99	R21	D13	V24
C42	A16	C100	U25	D14	S24
				D15	Mounted on T4
C43	C15	TR1	Speaker Panel		
C44	B13	TR2	Spaaker Panel	T1	(Speaker Panel PT1
C45	D14	TR3	N14		(Control Panel PT2
C46	D11	TR4	L16	T2	H16
C47	Part of I.F.T. 4	TR5	G21	T3	Y10
		TR6	K22	T4	V19
C48	F11	TR7	L25		
C49	E20	TR8	H25	L1	B22
C50	Part of I.F.T. 4	TR9	In Tuner	L2	L9
C51	Part of I.F.T. 4	TR10	In Tuner	L2a	N10
C52	Part of I.F.T. 4	TR11	In Tuner	L3	011
		TR12	In Tuner		(Board Surround A5-PT1
C53	F21	TR13	B20		(Control Panel-PT2
C55	Part of I.F.T. 4	TR14	B14		
C56	L8	TR15	C11	L5	P17
C57	N8	TR16	L8	L6	Y24
C59	N7	TR17	R9	L7	$\times 7$

CHASSIS 49-1 \& 49-2

PRINTED BQARD VIEWED FROM ABOVE CCOMPONENT SIDEJ

$1-$ $2-$ $3-$ $4-$ $5-$ $6-$ $7-$ $8-$ $9-$ $10-$ $11-$ $12-$ $13-$ $14-$ $15-$ $16-$ $17-$ $18-$ $19-$ $20-$ $21-$ $22-$ $23-$ $24-$ $25-$	

CHASSIS 49-1 \& 49-2
PRINTED BOARD VIEWED FROM BELOW CCONDUCTOR SIDEJ

SPEAKER PANEL PT1 VIEW ON INSIDE

* R34 may be wired to $10 \cdot 4 \mathrm{v}$ rail or to chassis

TUNER PANEL PT1

CONTROL PANEL PT2
VIEW ON INSIDE

SPEAKER PANEL PT 2 VIEW ON INSIDE

TUNER PANEL PT2 VIEW ON UNDERSIDE

ORDERING REPLACEMENT PARTS:

When ordering replacement and/or spare parts, quote the following information in correspondence and attach a label bearing this information to every component returned to the Company. Printed labels for this purpose will be supplied by the Service Division upon request.

1. Model No. of receiver - printed on rear of cabinet.
2. Chassis No. of receiver - e.g. 49-1, Issue 1.
3. Serial No. of chassis - printed on card attached to chassis.
4. Detailed specification of component - include circuit code No. where applicable.
5. Detailed description of the fault.

All the above information is necessary to ensure that the correct replacement part is despatched with minimum delay. The Kriesler Laboratory is interested in examining defective components so that the established quality of the product and reliability of components is under constant surveillance.

PARTS LIST - MECHANICAL

Description

Numeral Disc, Bone	N/A	
Numeral Disc, Charcoal	$16-8367 \mathrm{~A}$	N/A
Knob, Fine Tuning	$20-8367 \mathrm{~B}$	See Note
Knob, Channel Change	$20-8368$	See Note
Knob, Volume	$20-8449$	See note
Knob, Contrast or Brilliance	$20-8450$	See Note
3-pin Contact Insulator Ass'y	$46-8443$	$46-8443$
2-pin Contact Insulator Assy	$46-8442$	$46-8442$
Socket Body, 3-pin (240V)	$20-8384$	$20-8384$
Socket Body, 2-pin (12V.)	$20-8383$	$20-8383$
Contact, Slide (phosphor bronze)	$16-8377$	$16-8377$
Switch Cap	$20-8369$	$20-8369$
Sliding Cover, socket	$20-8380$	$20-8380$
Contact Retaining Block, 2-pin	$20-6142$	$20-6142$
Contact Retaining Block, 3-pin	$20-8386$	$20-8386$
Spacer, Power Socket	$20-8390$	$20-8390$
Spring, Earthing	$16-8388$	$16-8388$
Spring, Cathode Lead	$16-9623$	$16-9623$
Fuse Cover	$20-5156$	$20-5156$
Aerial Terminal Ass'y	$46-8445$	$46-9634$
Handle, Ivory	$20-8389 \mathrm{~A}$	See Note
Handle, Charcoal	$20-8389 \mathrm{~B}$	See Note
Foot	$20-8365$	$40-9638$
Escutcheon, Gold and Bone	$36-8360 ~ A$	See Note
Escutcheon, Chrome and Charcoal	$36-8360 ~ B$	See Note

Note: When ordering decorative parts, specify receiver Model No. and colour.

PARTS LIST - ELECTRICAL

Circuit Ref. 49-1 or 49-2 Issue 4.

Resistors

All values in ohms. All resistors $1 / 2 \mathrm{~W} \pm 10 \%$ carbon unless otherwise specified

Code	Value	
R99	5.6K	
R100	100	
R101	22K	
R102	470K	(330K with Anodeon xistors)
R103	5.6K	
R104	470	Overall Lin. Preset 20\%
R105	47	
R106		
R107		
R108	220	Height Preset 20\%
R109	100	
R110	4.7	BW $1 / 2$ wire-wound 5\%
R111	56K	
R112	2.2K	
R113	82K	
R114	47K	
R115	47K	
R116		
R117		
R118		
R119		
R120	47K	
R121	330	5\%
R122	330	5\%
R123	4.7K	
R124	10K	HORIZ. HOLD 32-8391
R125	47K	
R126	22K	
R127	22K	
R128	27K	5\%
R129	27K	5\%
R130	1K	
R131	220	
R132	2.7 K	
R133	15	
R134	1.5K	
R135	100K	
R136	33	(220 with Anodeon xistors)
R137	1K	
R138	1.5K	
R139	3.3	BW $1 / 2$ wire-wound
R140	33	
R141	1	(33 when TR32 is $2 \mathrm{SB468}$) BW $1 / 2$ wire-wound
R142	1	$\mathrm{BW} 1 / 2$ wire-wound
R143	1	BW $1 / 2$ wire-wound
R144		
R145	150	1W (not shown on circuit) (This resistor is between telescopic aerial and chassis)

CAPACITORS

All values in microfarads unless otherwise specified.

CODE	VALUE	TOL. \%	V.D.C. Wkg.	TYPE
C1	2200pF	20	500	Ceramic
C2	2200pF	20	500	Ceramic
C3	2000	$-10+50$	25	Electro.
C4	10	$-10+50$	12	Electro.
C5	500	$-10+50$	12	Electro.
C6	1000	$-10+50$	12	Electro.
C7	250	$-10+50$	12	Electro.
C8				
C9				
C10	22pF	5	500	Ceramic NPO
C11	0.0.1	20	25	Ceramic
C12	220pF	10	100	Styroseal
C13	0.01	20	25	Ceramic
C14	0.01	20	25	Ceramic
C15	330pF	20	500	Ceramic
C16	680pF	20	500	Ceramic
C17	330 pF	20	500	Ceramic
C18	0.047	10	160	Polyester
C19	10	$-10+50$	12	Electro.
C20	680pF	Part		
C21	10	$-10+50$	12	Electro.
C22				
C23				
C24	10	$-10+50$	12	Electro.
C25	50	$-10+50$	10	Electro.
C25A	4700pF	20	25	Ceramic
C25B	4700pF	20	25	Ceramic
C26	200	$-10+50$	10	Electro.
C27				
C28	680pF	20	500	Ceramic
C29	680pF	20	500	Ceramic
C30	4700pF	20	25	Ceramic
C31	10	$-10+50$	12	Electro.
C31A	60	$-10+50$	10	Electro.
C32	12pF	5	500	Ceramic NPO
C33	10 pF	$\pm 1 / 2 \mathrm{pF}$	500	Ceramic NPO
C34	68 pF	5	500	Ceramic NPO
C35	22pF	5	500	Ceramic NPO
C36	22pF	5	500	Ceramic NPO
C37	82pF	5	500	Ceramic NPO
C38	4700pF	20	25	Ceramic
C39	4700pF	20	25	Ceramic
C40	4700pF	20	25	Ceramic
C41	4700pF	20	25	Ceramic
C42	10 pF	$\pm 1 / 2 \mathrm{pF}$	500	Ceramic NPO
C43	4700pF	20	25	Ceramic
C44	10 pF	$\pm 1 / 2 \mathrm{pf}$	500	Ceramic NPO
C45	4700pF	20	25	Ceramic
C46	4700pF	20	25	Ceramic
C47	4.7 pF	Part		
C48	4700pF	20	25	Ceramic
C49	10	$-10+50$	12	Electro.
C50	5.6 pF	Part		

CODE	VALUE	TOL. \%	V.D.C. Wkg.	YPE
C51	4700pF	Part of IFT 4		Electro
C52	4700pF	Part of IFT 4		
C53	10	$-10+50$	12	
C54				
C55	3.9 pF	Part of IFT 4		
C56	680pF	20	500	Ceramic
C57	1	$-10+50$	40	Electro.
C58				
C59	0.1	10	160	Polyester
C60	1000pF	20	500	Ceramic
C61	150pF	10	100	Styroseal
C62	330pF	20	500	Ceramic
C63	0.15	10	160	Polyester
C64				
C65	1000pF	10	400	Polyester
C66	3.3 pF	Part of		
C67				
C68				
C69	1000pF	20	500	Ceramic
C70	0.033	10	160	Polyester
C70A	0.01	20	25	Ceramic
C70B	330pF	20	500	Ceramic
C71	0.047 *	10	160	Polyester
C72	0.047	20	25	Ceramic
C73	15	20	10)	Siemens Tantalum Electro
C74	15	20	10)	Type B45134-A3156-M002.
C74A	330pF	20	500	Ceramic
C75	1000	$-10+50$	12	Electro.
C76	1000pF	20	500	Ceramic
C77	1000pF	20	500	Ceramic
C78	150pF	10	100	Styroseal
C79				
C80	330pF	20	500	Ceramic
C81	0.01	10	160	Polyester
C82	0.01	10	160	Polyester
C82	0.022	10	160	Polyester
C84	220pF	20	500	Ceramic
C85	0.1	10	160	Polyester
C86	10	$-10+50$	12	Electro.
C87	50	$-10+50$	10	Electro.
C88	470pF	10	100	Styroseal
C89	0.022	10	63	Polystyrene ${ }^{1}$
C90	5600pF	10	400	Polyester
C91	0.047	10	160	Polyester
C91A	68pF	20	500	Ceramic N750
C92	400	$-10+50$	16	Electro.
C93	250	$-10+50$	12	Electro.
C94				
C95	6	10	50	Lacquer Film ${ }^{2}$
C96	2200pF	20	500	Ceramic
C97				
C98	0.068	10	160	Polyester ${ }^{3}$
C99	0.015	20	600	Paper
C100	12.5	$-10+50$	150	Electro.

NOTES:

1. Allied Capacitor Type TCS/E Extended Foil.
2. Allied Capacitor Type PML.

A 5 uF capacitor has been used in this position, sometimes shunted with a 0.47 uF . Use the 6 uF type listed for replacement purposes.
3. The 0.068 uF value is used with Philips yokes only. Value 0.082 uF is used with M.S.P. yokes.

* Different value when Anodeon transistors are used. For actual value, see circuit diagram.

49-1 \& 49-2 CHASSIS

A
H.OT. 10 - D8

E
TR22

J
TR24

0
TR27

T
D10-D11

K
TR24-TR25

P
TR27

U
D11

PEAK•TQ•PEAK WAVE FORMS

C
TR16-D9

G
TR 18

L
TR25

Q
TR28

V
TR 29

M
TR25-TR26

R
TR28
HORIZ.

W
TR30

A1
TR32-HOT. 3.

E
TR22

I
TR23

N
C73-C74

S
D10

X
TR31

ADDITIONS:
R33A, $470 \quad 10 \% 1 / 2 \mathrm{~W}$ Carbon (PT2 only)
889, 1.5K 10\% ½W Carbon
C31A, $64 \mu \mathrm{~F}$ 10V Electro (not designated) C70A, $.01 \mu \mathrm{~F}$ 25V Ceramic

DELETIONS:

R86, 2.7M
R107, 47K Top Lin Control
C54, $10 \mu \mathrm{~F}$ 12.5V Electro

C64, 100 pF C94, 2200 pF C97, 2200 pF

ADDITIONS:
R86, 100K 10\% ½W Carbon
Anodeon Transistor Conversion.
See Service Notes No. 43 and the
ssue 4 circuit diagram.

