TELEVISION SERVICE MANUAL NO. 35

CHASSIS

49-1

MODEL
PT1

COMMERCIAL
TITLE
"MINISCOPE"

DIMENSIONS AND WEIGHT: $11 \frac{1_{4}^{\prime \prime}}{}{ }^{\prime \prime}$ WIDE, $12 \frac{3}{4}{ }^{\prime \prime} \mathrm{HIGH}, 10 \frac{1}{2}{ }^{\prime \prime}$ DEEP. PKD WEIGHT $21 \frac{1}{2} \mathrm{lb}$.

POWER SUPPLIES:

1. Mains supply $225-265 \mathrm{VAC}, 50 \mathrm{~Hz}$.
2. $12-16 \mathrm{VDC}, 1.25 \mathrm{Amps}$.

A slide switch at the rear of the receiver covers the 2-pin DC socket when the switch is moved to reveal the 3-pin AC socket, and vice versa.
If the wrong polarity DC connection is made, the receiver will not operate.
If the wrong polarity DC connection is made and the receiver chassis is shorted to a car chassis wired with a negative earth system, the fuse will blow.
If the correct polarity DC connection is made and the receiver shorted to a car chassis wired with a positive earth system, the fuse will blow.

FUSE:

A secondary fuse is fitted; rating 2 A .

AERIAL CONNECTIONS:

Aerial terminal clips, paralleled with a 2-pin socket are fitted on the rear panel; the socket is principally for convenience in connecting the inbuilt telescopic aerial, but in difficult reception areas when using an external aerial, experiment may show that connecting the inbuilt aerial additionally, improves reception on a particular channel; but check that it does not impair it on other channels.

CHASSIS ACCESS:

Remove the screw from the front end of the handle, the screw being under the aerial when this is laid flat in the carrying position. Remove the channel change and fine tuning knobs (pull off types). Lay the receiver on the tube face, suitably protecting this and the escutcheon from abrasions. Remove four screws from the back. Lift off the back and the centre wrap-around. Lay the receiver on the side housing the loudspeaker. Remove two screws below the bakelite panel at the rear. The chassis may now be swung out for servicing; if necessary, easing the two pivot screws slightly.
CAUTION: When re-assembling, ensure that the two chassis pivot screws are tight and do NOT forget to replace the screw in the carrying handle otherwise, when the receiver is lifted, the handle may be damaged.

PICTURE TUBE REPLACEMENT:

Follow procedure for chassis access then, having disconnected appropriate leads:-
(a) Pull off front control knobs.
(b) Remove four screws securing the front escutcheon (accessible from the rear).
(c) Remove four screws from picture tube mounting flange.
(d) Remove defective tube and centre new tube in position, checking that the escutcheon locates squarely on its guide pins. CAUTION: When handling the picture tube, the normal practice of earthing the EHT connection should always be followed because of the charge that may be developed or maintained at this point. An unanticipated shock may cause the holder of the tube to release his grip and allow the tube to fall.

TELESCOPIC AERIAL REMOVAL:

Follow procedure as for chassis access, unsolder 680 pF coupling capacitor, then remove the two remaining handle securing screws. The base of the aerial is now accessible and is secured by a fine-threaded slotted ring-nut. In the absence of an appropriate tool, the ring-nut may be removed by turning it with a screwdriver having a blade size that will fit into one of the slots in the ring-nut.

DY51 REMOVAL:

The two filament wires of this valve are soldered to its socket. Replacement of the valve is most easily effected in the following manner:-
Remove the plastic cap covering the base of the valve socket assembly; unsolder the EHT and the two filament loop connections; disconnect the anode lead; push the valve and socket, base first, through and out of the plastic housing. The socket connections now may be easily seen and the soldering operations conveniently effected. Ensure that these are correctly made to include the coiled resistance wire (R144) in series between the filament and one leg of the filament loop.

CHASSIS DATA:

WIDTH AND HORIZONTAL LINEARITY ADJUSTMENT:

The horizontal linearity adjustment is most accurately carried out on a transmitted test pattern. The core of L7 has a square cross-section slot but a small screwdriver blade (approximately $\frac{1}{8}{ }^{\prime \prime}$) may be used to turn it until satisfactory linearity is achieved. This adjustment also has an appreciable effect on scan width and consequently may be used to vary the width as required, whilst observing that the linearity is maintained to production standards. In the unlikely event of a variation of width only being required, this may be achieved by altering the value of C95 and provision is made on the board for adding a capacitor to reduce width.

HORIZONTAL SYNC ADJUSTMENT:

The receiver should hold sync, when on channel, over the full range of the Horizontal Hold Control, but will lose sync when changing channels if the Hold Control is at either extremity. In adjusting the Horizontal Pre-set to obtain these conditions, proceed as follows:-
(a) Gain access to chassis as previously described.
(b) Centre the Horizontal Hold.
(c) Short-circuit the collector of TR22 to chassis (to remove sync).
(d) Adjust the core of L5 until the picture 'floats' steadily on the screen.
(e) Remove the short-circuit on TR22 and check that the picture jumps firmly into sync.

VERTICAL SYNC ADJUSTMENT:

Over a small section of the range of the Vertical Hold, the picture should roll slowly downward. Adjust the Hold Control just past the point at which the picture locks in. It is immaterial whether or not the picture loses sync at the low frequency end of the control range.

VERTICAL HEIGHT, LINEARITY AND TOP LINEARITY:

These are adjusted in the conventional manner by pre-set controls accessible through the base of the receiver cabinet. Care should be exercised that the inaccurate insertion of the screwdriver blade does not short circuit or damage adjacent components.

TUNER TYPE NT3017:

Fine tuning is accomplished by a variable piston-type capacitor shunted across the tuning coil for the local oscillator. The capacitance is controlled by the movement of a piston which, in turn, is controlled by a lever system. The lever is actuated by cams on the end of the coil turret. These cams are set by the fine tuning knob, as follows:-
Press in the fine tuning knob to engage the cam mechanism; turn knob to adjust fine tuning; release knob. Fine tuning is then pre-set for that channel and will re-set itself automatically each time that channel is selected. Note that there is no "Stop" mechanism on the fine tuning adjustment so that, for a given adjustment, it will be "Towards sound on picture" and then, as the fine tuning knob is further rotated, "Away from sound on picture".
There is a screw adjustment for an overall variation of fine tuning on all channels. Consequently, if this is varied on one channel, the individual presetting on all other channels in use has to be reset.
With the exception of the Fine Tuning adjustment described above, no adjustment should be made to the tuner WITHOUT ADEQUATE TUNER ALIGNMENI EQUIPMENT AND EXPERIENCE IN ITS APPLICATION.

POSITION OF TEST POINTS:

Number	Position	Board Reference
1.	TR3-C/TR4-B	M15
2.	R16/C19	G19
3.	T2, pin-9/C21	J17
4.	IF 1 -1b, pin-F/C35	D21
5.	R39/C38	C20
6.	TR13-C/IFT2-B	B17
7.	TR15-B/C44	B12
8.	TR16-B/L2	L9
9.	TR17-C/R79	R9
10.	TR28-B/C80	L23

PRE-SET CONTROLS, MEASUREMENTS REQUIRED:

VIDEO AMP BIAS ADJUSTMENT:

Set Contrast to maximum (clockwise), set tuner to the blank channel, connect $\overline{\mathrm{DC}}$ voltmeter ($20 \mathrm{~K} \Omega / \mathrm{V}$ or greater) between TP9 and earth. Adjust Bias pre-set (Board Reference G13) to 30 volts.

AGC PRE-SET:

This is so called for the sake of brevity in printing on the circuit diagram. It should not be confused with the manual type of AGC control which is adjusted for signal level at different locations in the field. The 49-1 AGC control is for setting (during production) the threshold at which AGC voltage is developed and should not require re-adjustment in the field unless associate components have changed in electrical value. In this event (if necessary, replacing the component of changed value), proceed as follows:-
Set the Contrast to maximum (clockwise). Set tuner to an operating channel receiving a moderate to strong signal. Connect a CRO, switched to DC input, to the 10.4 volt supply rail temporarily, and on the one volt per centimetre range, set the trace at a convenient position near the top of the graticule. Connect CRO to TR16 collector (Board Reference L7) and adjust pre-set so that the sync pulse tips are one volt below the position of the trace when the CRO was connected to the 10.4 volt supply rail.

FIELD ADJUSTMENT:

Where no CRO is available, an approximate adjustment using a DC voltmeter ($20 \mathrm{~K} \Omega / \mathrm{V}$ or greater) may be made. This may degrade the noise-immunity characteristic of the receiver but in a given location, if this is not operationally needed, proceed as follows:-
Set Contrast to maximum (clockwise). Select a channel receiving a strong signal (to develop AGC voltage). Connect the voltmeter between TR16 collector and earth and adjust pre-set for meter to read 7.5 volts DC (slight fluctuations will occur as the video content of the picture changes).
In weak signal areas, adjust the pre-set for a meter reading of 7.0 volts and warn the owner that, because this is a makeshift adjustment, if he moves to a strong signal area, re-adjustment may be necessary because of an apparent sync-lockout condition.

CIRCUIT DATA:

SPOT SUPPRESSION:

This is arranged by the voltages for the Brilliance Control (picture tube control grid) and 2nd Video Amplifier transistor collector being derived from separate sources from the Horizontal Output Transformer. When switching off, the generation of these voltages ceases rapidly but the time constants in the individual circuits are such that the collector voltage (therefore the picture tube cathode voltage) is maintained longer than the control grid, consequently the beam current is rapidly cut off and spot suppression is thereby effected. Note that the final anode voltage on the picture tube is not discharged by this means, therefore the customary warning to discharge this voltage when handling the picture tube is emphasised.

WAVEFORM "B’’:

The waveform, as shown, is that of the maximum excursion of the flyback keying pulse. This will be seen when a TV carrier wave is being received, without picture modulation. Under other operating conditions, the waveform may be widely different. On a blank channel, for example, the waveform may appear to be of an integrated shape, sloping from the top end of one keying pulse to the bottom of the next pulse but this shape partly depends upon the input impedance of the CRO in use. On a strong signal channel, video information will be present on the waveform below the pulse cut-off level, but the accuracy of its presentation may also depend upon the CRO input impedance.

ALIGNMENT PROCEDURES:

INTERCARRIER I.F. AMPLIFIER AND RATIO DETECTOR ALIGNMENT:

Sweep Method

Equipment required.
(a) Sweep Generator $\pm 250 \mathrm{KHz}$ deviation at 50 Hz rate, centre frequency 5.5 MHz .
(b) Marker Generator which will accurately indicate 5.5 MHz .
(c) CRO.

Procedure
1a. Disconnect the stabilizing capacitor (C21) across the RD diodes (lift jumper at Board Reference F17).

1b. Disconnect the de-emphasis capacitor, C18 (lift jumper at Board Reference L17).
2. Connect the CRO across the diode load resistor (TP3 to earth).
3. Connect Sweep Generator to TP1.
4. Unscrew secondary core of Ratio Detector transformer until flush with the end of the former (access through middle hole in top of T2 can).
5. Peak primary core for the curve of Fig. 1, using the Marker Generator to set the limits shown.
6. Connect Sweep Generator to TP8 (BR L8).
7. Tune ICIF 1 to 5.5 MHz as shown in Fig. 1.
8. Re-connect the stabilising capacitor C21.
9. Re-connect CRO to TP2 (BR G18). Tune secondary core of Ratio Detector to display a typical " S " curve centred on 5.5 MHz as shown in Fig. 2.

9a. Re-connect C18.
FIG. 2
10. Remove Sweep Generator and CRO.

DC Method

Where a $5.5 \mathrm{Mc} / \mathrm{s}$ sweep generator is not available, the transmitted signal, attenuated as required, provides an accurate and convenient method of alignment.

Equipment Required
(a) A centre-zero VTVM or voltmeter, completely isolated from earth with zero reading adjusted to centre scale by the 'Set Zero' control. In lieu of the centre-zero VTVM or voltmeter, an ordinary voltmeter may be used as explained below. The voltmeter used must be at least 10,000 ohms per volt and preferably higher.
(b) Two resistors approximately 100 K each, matched to within 1% and connected in series.

Procedure

1. Connect the two series 100 K resistors across the electrolytic stabilising capacitor bridging the ratio detector diodes, TP3.
2. Connect the voltmeter, positive to the centre of the 100 K resistors, negative to ground. Unscrew secondary core of ratio detector transformer flush with the can (middle hole in T2 can). With an incoming transmitted signal, peak RD primary and ICIF for maximum reading, attenuating the signal as required.
3. Re-connect the negative voltmeter lead to the audio output line of the ratio detector at the output end of the de-emphasis network, TP2.
4. Tune secondary for maximum output. This means that the secondary, at this juncture, is tuned to one of the two maxima of the ratio detector voltage curve.
5. Further adjustment of the secondary core, in the correct direction, will cause the ratio detector voltage curve to pass through zero to the other maximum: Therefore, readjust the secondary core, taking note of the maximum positive and maximum negative readings obtainable on the centre-zero voltmeter, until the meter reading is exactly the mean of these maximum positive and maximum negative values. Ideally, these maxima should be equal, depending on the matching of the diodes and 100 K resistors. In the field, there may be cases where equality cannot be obtained, and in these cases, ignoring polarity, their numerical values should be within 10% of their average.
6. If the inequality of the maxima readings is too great, check the diodes and/or the 1 K resistors in series with them. Where no centre-zero voltmeter is available an ordinary voltmeter may be used and, by reversing the test leads as required, the maximum positive and negative readings taken as before, setting the core for the average reading.
When no transmitted signal is available, or in deep fringe areas where the noise level is high and the signal strength fluctuates, an accurate $5.5 \mathrm{Mc} / \mathrm{s}$ signal derived from an FM signal or marker generator may be used.
Feed the signal in at TP8, taking care the input is at a low level but sufficient to produce 3 volts across the electrolytic stabilising capacitor when the ICIF's are correctly aligned. This ensures that the limiter is functioning correctly.

5.5 MHz TRAP ADJUSTMENT:

Equipment
Signal Generator to provide accurate 5.5 MHz signal, 30% AM by 400 or 1000 Hz .
CRO.
High impedance detector probe (see Fig. 7).
Procedure
Connect CRO, via high impedance probe, to TP9 (TR17 collector).
Set Contrast to maximum (clockwise) and Brilliance to minimum (anti-clockwise).
Connect Signal Generator to TP8 (TR16 base).
Feed in strong signal at 5.5 MHz and adjust L 3 for minimum amplitude on CRO.

ALTERNATIVE METHOD (USING TRANSMITTED SIGNAL):

Set Contrast to maximum (clockwise).
By-pass the junction of ICIF 1 and C10 (Board Reference M10) to earth with $.0047 \mu \mathrm{~F}$ (approximately) capacitor.
Couple TP9 to TP1 with 100 pF (approximately) capacitor.
Connect DC Voltmeter ($20 \mathrm{~K} \Omega / \mathrm{V}$ or greater), positive to TP3, negative to earth, on low voltage range (to read less than 1 volt).
Adjust L3 for minimum reading on meter.

VIDEO I.F. ALIGNMENT:

Equipment
(a) Sweep generator capable of providing a deviation of 12 MHz or more at 50 Hz sweep rate, centre frequency 34.75 MHz .
(b) An accurate marker generator for use with the sweep.
(c) CRO with low impedance detector probe. See circuit of probe, (Fig. 7).

Procedure

1. Set the tuner to the blank channel between channels 0 and 11.
2. Connect CRO directly to TP9 (BR R9).
3. Connect sweep to TP7 (BR B12).
4. Set Contrast to maximum, Brilliance to minimum and video amp bias to mid-
 position.
5. Unscrew cores of IFT 1B, L1, IFT $2 \&$ IFT 3 flush with top of cans.
6. Tune primary and secondary of IFT 4 for the response as in Fig. 3. If necessary, touch up on IFT 4 coupling coil.
7. Disable Horizontal Oscillator (earth base of TR30) (BR R17).
8. Connect Sweep to tuner test point.
9. Connect CRO, via a low impedance detector (Fig. 7) to TP4 and adjust CRO for high sensitivity.
10. Adjust both tuner coils for maximum response at 34.75 MHz , as in Fig. 4.
(NOTE: Do NOT subsequently alter the coil near the AGC post, if 'touching up' the alignment). This is tuned to the outer peak and the end of the core protrudes past the end of the former. After alignment it should be sealed with 'Grip-lac'.
11. Re-connect CRO, with detector, to TP6 (BR B17).
12. Tune L1 (31.25 MHz Trap) and IFT 1B for the response shown in Fig. 5. (Very slight re-adjustment of IFT 1A, on tuner near IF output lead, may be necessary to obtain the required response.)
In the event of any initial difficulty in displaying a response curve for this stage, turn the AGC pre-set fully clockwise (viewed from the conductor side). Re-set the AGC correctly when alignment is completed.
13. Remove detector probe and re-connect CRO to TP9 (BR R9).
14. Remove earth on base of TR30.
15. Adjust IFT 2 and IFT 3 for the response shown in Fig. 6.

PRINTED BOARD VIEWED FROM TOP. (COMPONENT SIDE)

VIEWED FROM CONDUCTOR SIDE

NシyפシIa 킵

CHASSIS 49.1 PEAK-PEAK WAVE FORMS.

ORDERING REPLACEMENT PARTS:

When ordering replacement and/or spare parts, quote the following information in correspondence and attach a label bearing this information to every component returned to the Company. Printed labels for this purpose will be supplied by the Service Division upon request

1. Model No. of receiver-stamped on rear cover of cabinet.
2. Chassis No. of receiver-e.g. 49 - 1, Issue 1 .
3. Serial No. of chassis-printed on card attached to chassis.
4. Detailed specification of component-include circuit code No.
5. Detailed description of the fault.

All the above information is necessary to ensure that the correct replacement part is despatched with minimum delay. The Kriesler Laboratory is interested in examining defective components so that the established quality of the product and reliability of components is under constant surveillance.

PARTS LIST, MECHANICAL:

PART NO.	DESCRIPTION		
16-8367A	Numeral Disc, Bone		
16-8367B	," ", Charcoal	$16-8388$	Spring, Earthing
$20-8366$	Knob, Fine Tuning	$20-5400$	Spring, Cathode Lead
$20-8368$	Knob, Channel Change	$46-8445$	Fuse Cover
$20-8449$	Knob, Volume	Aerial Plug Panel Assembly	
$20-8450$	Knob, Contrast or Brilliance	$20-8389 \mathrm{~A}$	Handle, Ivory
$46-8443$	3-Pin Contact Insulator Assembly	$20-8389 \mathrm{~B}$	Handle, Charcoal
$46-8442$	2-Pin Contact Insulator Assembly	$36-8365$	Cover, Foot
$20-8384$	Socket Body, 3-Pin (240V)	$36-8360 \mathrm{~A}$	Escutcheon, Gold and Bone
$20-8383$	Socket Body, 2-Pin (12V)	SA 107 (4S)	Telescopic Aerial, Complete
$16-8377$	Contact, Slide (Phosphor Bronze)	$83-218$	Earphone Jack
$20-8369$	Switch Cap	D7523	240V Lead, AC Plug and Socket
$20-8380$	Sliding Cover-Socket	$90-8414$	12V Power Cord, Complete
$20-6142$	Contact Retaining Block, 2-Pin	McMurdo 1833	EHT Plug Insert
$20-8386$	Contact Retaining Block, 3-Pin	McMurdo 21870A	Ultor Cap
$20-8390$	Spacer, Power Socket	McMurdo B7-HM	Picture Tube Socket

PARTS LIST, ELECTRICAL:

RESISTORS:-
$\frac{1}{2} \mathrm{~W} \pm 10 \%$ Carbon (BTS): All except as follows:-
$\frac{1}{2} \mathrm{~W} \pm 5 \%$ Carbon (BTS): R121, R122, R128, R129
$\frac{1}{2} \mathrm{~W} \pm 5 \%$ Wirewound (BW $\frac{1}{2}$): R110
$\frac{1}{2} \mathrm{~W} \pm 10 \%$ Wirewound (BW $\frac{1}{2}$): R30, R31, R139, R141, R142, R143
$\frac{1}{2} \mathrm{~W} \pm 10 \%$ Carbon (AS) : R56, R63, R65, R67, R79, R80,
R81, R85, R87, R94, R101, R102, R120, R126, R135
$1 \mathrm{~W} \pm 10 \%$ Carbon (BTA): R7, R84, R86
$1 \mathrm{~W} \pm 10 \%$ Carbon (AY): R83
$2 \mathrm{~W} \pm 10 \%$ Carbon (BTB): R78
$5 \mathrm{~W} \pm 10 \%$ Wirewound (PW5): R1
Thermistor, Philips B8-320 $01 \mathrm{P} / 50 \mathrm{E} \pm 20 \%$: R28
Spark Gap, 3122-100-10131: SG1, SG2, SG3.
Pre-set RM Taper A $\pm 20 \%$: R4
Part No. 32-8391: Pot-Vert. Hold, Horiz. Hold; R97, R124
,, ,, 32-8392: Pot—Volume, Off-On SW; R17
," ,, 32-8393: Pot—Brilliance; R82
,, ,, 32-8394: Pot—Contrast
Pre-set Philips EO97AD/?: R57, R62, R88, R104, R107, R108. See following note

NOTE: Philips Resistors or Capacitors, coding of part numbers:-Replace "?" with component value, using "M" or "K" as multipliers and as decimal point, or " E " if no multiplier is required, e.g., $2 \mathrm{M} 2=2.2 \mathrm{M} \Omega$ or $2.2 \mu \mathrm{~F}$. $100 \mathrm{~K}=100 \mathrm{~K} \Omega$ or $100,000 \mathrm{pF}$ (i.e. . $1 \mu \mathrm{~F}$) . $2 \mathrm{~K} 2=2.2 \mathrm{~K} \Omega$ or 2200 pF (i.e. . $0022 \mu \mathrm{~F}$). $470 \mathrm{E}=470 \Omega$ or 470 pF . Thus $\mathrm{C} 296 \mathrm{AC} / \mathrm{A} 7 \overline{\mathrm{~K}}=1000 \mathrm{pF}$ Capacitor Type C296AC/A.

CAPACITORS:-
Polyester $160 \mathrm{~V} \pm 10 \%$ Philips C296AA/A?; C18, C59. C63, C70, C71, C81, C82, C83, C85, C91, C98
Polyester $400 \mathrm{~V} \pm 10 \%$ Philips C296AC/A?; C58, C65,
Ceramic 500 V NPO $\pm \frac{1}{2} \mathrm{pF}$ Philips C304GB/L?; C33, C42 C 44
Ceramic 500 V NPO $\pm 5 \%$ Philips C304GB/B?; C10, C32, C $3 \overline{4}, \mathrm{C} 35, \mathrm{C} 36, \mathrm{C} 37$
Ceramic 500 V NPO $\pm 20 \%$ Philips C318BA/P?; C1, C2, C96, C97
Ceramic 500 V NPO $\pm 20 \%$ Philips C322BC/P?; C94
Ceramic 500 V Type AY $\pm 20 \%$ Ducon; C16, C27, C28, C29, C56, C60, C69
Ceramic Redcap 25V CDR "F" $\pm 20 \%$ Ducon; C30, C38, C39, C40, C41, C43, C45, C46, C48
Ceramic Redcap 25 V CDR "A" $\pm 20 \%$ Ducon; C11, C13, C14
Ceramic Redcap 25V CDR "B" $\pm 20 \%$ Ducon; C72
Electrolytic $10 \mathrm{~V}-10 \%+50 \%$ Philips C426AR/D?; C7, $\mathrm{C} 25, \mathrm{C} 26, \mathrm{C} 93$

Electrolytic $12.5 \mathrm{~V}-10 \%+50 \%$ Philips C426AR/AD?; C4, С19, С24, С31, С49, C53, С54, С86, C87
Electrolytic $25 \mathrm{~V} 74-10 \%+50 \%$ Philips C428AR/F?; C73,
Electrolytic $40 \mathrm{~V}-10 \%+50 \%$ Philips C426AS/G?; C57
Electrolytic 12VW $-10 \%+50 \%$ Ducon EUO1227; C5 Electrolytic 12VW $-10 \%+50 \%$ Ducon ET5B; C6, C75 Electrolytic 12VW $-10 \%+50 \%$ Ducon PEUO1227; C92
Electrolytic $25 \mathrm{VW}-10 \%+50 \%$ Ducon ET5D; C3
Electrolytic $100 \mathrm{VW}-10 \%+50 \%$ Ducon ET1B; C100
Metalised Polyester 250VW Type SLF $\pm 10 \%$; C95

STYROSEAL (Ducon):-
100V DFB $100 \pm 10 \%$; C6
00V DFB $104 \pm 10 \%$; C78
100 V DFB $108 \pm 10 \%$; C12, C84
100 V DFB $112 \pm 10 \%$; C $62, \mathrm{C} 80$
100V DFB $116 \pm 10 \%$; C88
1000 V DFB $1000 \pm 20 \%$; C64
50 V DFB $0512 \pm 10 \%$; C76
50 V DFB $0544 \pm 10 \%$; C89
PAPER (Ducon):-
600 V TPB $654 \pm 20 \%$; C99

Circuit Code	Part	
No.	No.	DESCRIPTION
T1	$18-8395$	Power Transformer
T2	CZ 324-399	Ratio Detector
T3	$18-8402$	Horiz. Driver Transformer T4
AT 2042/01	Horiz. Output Transformer	
-	AT 7108/50	Socket for HOT
L1 \& IFT1b	CZ 320-385	
L2	CZ 322-068	
L2a	CZ 322-068	
L3 \& ICIF1	CZ 320-387	
L4	$28-8396$	Vert. Output Choke
L5	CZ 323-434	Horiz. OSC Coil
L6	VK200 02/3B	Horiz. Supply Choke
IFT 1B \& L1	CZ 320-385	
IFT2	CZ 320-386	
IFT3	CZ 320-386	
IFT4 \&	CZ 324-398	
ICIF1 \& L3	CZ 320-387	

