"HIS MASTER'S VOICE" # CIRCUIT DIAGRAM AND PARTS LIST for # CHASSIS TYPE J5 TRANSISTOR PORTABLE RADIO RECEIVER THE GRAMOPHONE COMPANY LIMITED (Inc. in England) HOMEBUSH - N.S.W. #### H. CLARK PTY. LTD. PRINTERS CAMPERDOWN, N.S.W. ## TECHNICAL SPECIFICATION # FREQUENCY RANGE: 540 — 1600 Kc/s. (555 — 187.5 metres). INTERMEDIATE FREQUENCY: 455 Kc/s. #### BATTERY: One Eveready Type 2362. #### **BATTERY CONSUMPTION:** #### TRANSISTORS: 1 Type 2N412 Converter 2 Type 2N410 1st and 2nd I.F. Amplifiers 1 Type 2N406 Audio Amplifier 1 Type 2N408 Audio Driver 2 Type 2N408 Push-Pull Audio Output. # CRYSTAL DIODES, TYPE GEX34: 1 Audio Detector and A.V.C. 1 Converter Clamp 1 Overload Diode. #### LOUDSPEAKER: 23-inch Permanent Magnet No. 50,000. V.C. Impedance at 400 c/s 15 ohms. Undistorted Power Output 150 MW. #### CONTROLS: Tuning Control: Front left of cabinet. On/Off Volume Control: Right-hand end of cabinet #### DIMENSIONS: #### PRINTED BOARD REMOVAL: Remove the tuning knob by unscrewing its centre locking screw and twisting the knob free. Slacken off the captivated rear retaining screw and remove cabinet back. Close the gang, remove the volume control knob and the three board mounting screws may be removed. Lift the board from the cabinet and roll it over, exposing the wiring side. The speaker may be disconnected if required but, in general, this is not necessary. # D.C. RESISTANCE OF WINDINGS | Winding | D.C. Resistance
in ohms | Winding | D.C. Resistance
in ohms | |-----------------------|----------------------------|---|----------------------------| | Ferrite Rod T1 | Primary * Secondary 1.8 | I.F. Transformers T3, T4 & T5 | Primary 1.2
Secondary * | | Driver Transformer T6 | Primary*
Secondary 1.2 | Driver Transformer T6 Output Transformer T7 | Primary | ^{*} Indicates less than 1 ohm. #### RESISTANCE MEASUREMENT: Although servicing by resistance measurement is one of the most common methods used for testing valve radios, this method has severe limitations when applied to the testing of circuits which contain transistors Transistors will conduct an electric current when the terminal voltage is supplied from an ohm-meter just as readily when the voltage is applied from a battery. Because of this transistor conductivity, misleading indication will be obtained and the transistors themselves can be permanently damaged by using resistance measurement. # **VOLTAGE CHART** #### PRELIMINARY TESTS: Regardless of what the stated complaint may be, the following overall conditions should be checked: - (a) Condition of the battery (voltage with the set turned on). - (b) Overall current drain with no signal input (should be 9—12 mA). - (c) Soldered connections. Turn the radio on with maximum volume. While listening to the loudspeaker, gently wiggle all visible components and leads with an insulated tool such as an alignment tool. - (d) Sensitivity by listening test. - (e) Distortion by listening test. #### **ALIGNMENT TABLE** | Order | Connect High Side of
Generator To | Tune Generator
To | Tune Receiver
To | Adjust for Maximum
Peak Output | |-------------|--|-------------------------------------|--|-----------------------------------| | 1
2
3 | Aerial Section of Gang
Aerial Section of Gang
Aerial Section of Gang | 455 Kc/s.
455 Kc/s.
455 Kc/s. | H.F. Limit
H.F. Limit
H.F. Limit | Core T5
Core T4
Core T3 | | | Repeat steps 1, 2 | 2 and 3 until maxim | num output is obtain | ned.‡ | | 4 | Inductively coupled * to Rod Aerial | 600 Kc/s. | 600 Kc/s. | L.F. Osc. Core Adj.
(T2) † | | 5 | Inductively coupled * to Rod Aerial | $1,\!620~{ m Kc/s}.$ | Gang fully open | H.F. Osc. Adj. (C4) | | 6 | Inductively coupled * to Rod Aerial | 1,500 K c/s. | 1,500 Kc /s. | H.F. Aerial Adj.
(C2) x | | | 1 | Repeat steps 4, 5 | and 6. | | - *A coil comprising 3 turns of 16 gauge D.C.C. wire about 12 inches in diameter should be connected across the output terminals to the generator, placed concentric with the rod aerial and distant not less than one foot from it. - † Rock the tuning control back and forth through the signal. - x Rock generator back and forth through the signal as there is some pulling effect on this adjustment. - ‡ These transformers are a very high Q miniature type. It should be appreciated then that the amount of travel for the tuning core to cover its tuning range is much smaller than on normal I.F. transformers. Tuning the I.F. thus becomes more critical, and the following hints will prove useful. - (a) The tuning tool used should be a small metal screwdriver whose tip fits cleanly into the tuning core. - (b) When turning the core, do not use any downward pressure as the threaded boss has enough resilience to detune the I.F. after the pressure has been relieved. - (c) The threads on the boss may be damaged if the core is wound in and forced against the winding bobbin. This should never happen as only a light torque is needed to turn the tuning core normally. # COMPONENT LOCATION # COMPONENT LOCATION CIRCUIT DIAGRAM #### **COMPONENT PARTS LIST** #### RESISTORS All Resistors ± 10% Carbon unless otherwise stated | Code No. | | Description | Part No. | Code No. | | Description | Part No. | |------------|-----------------------|---|--------------------|------------|-----------------------|----------------------------|------------------| | R1
R2 | 3.3K ohms
27K ohms | $\frac{1}{2}$ watt | 601290
601520 | R14
R15 | 1.5K ohms
47K ohms | Volume Control w/s | 620014
601610 | | R3 | 470 ohms | $\frac{1}{2}$ watt $\frac{1}{2}$ watt | 601180 | R16 | 10K ohms | $\frac{1}{2}$ watt | 601400 | | R4
R5 | 2.7K ohms
68K ohms | $\frac{1}{2}$ watt $\frac{1}{2}$ watt | $601260 \\ 601632$ | R17
R18 | 1K ohms
3.3K ohms | ½ watt
½ watt | 601210
601290 | | R6
R7 | 47K ohms
2.2K ohms | $ rac{ar{1}}{2}$ watt $ rac{ar{1}}{2}$ watt | $601610 \\ 601240$ | R19
R20 | 2.2K ohms
47K ohms | 1/2 watt
1/3 watt | 601240
601610 | | R8
R9 | 100 ohms
820 ohms | $\frac{1}{2}$ watt | 601070
601202 | R21
R22 | 4.7K ohms
220 ohms | $\frac{1}{2}$ watt | 601340
601091 | | R10 | 100 ohms | $\frac{1}{2}$ watt | 601070 | R23 | 100 ohms | ½ watt
½ watt | 601070 | | R11
R12 | 27K ohms
4.7K ohms | $\frac{1}{2}$ watt | $601520 \\ 601340$ | R24
R25 | 6.8K ohms
1K ohms | ½ watt
½ watt | 601362
601210 | | R13 | 470 ohms | $\frac{1}{2}$ watt | 601180 | R26 | 10 ohms | $\frac{\tilde{1}}{2}$ watt | 601001 | # **CAPACITORS** | Code No. | Description | Part No. | Code No. | Description | Part No. | |----------|------------------------------|----------------|----------|------------------------------|----------------| | C1 | 8 — 163 pf Tuning Aerial | *** | C15 | 0.01 uf 200 vw Hunts W99 | 228609 | | C2 | 1 — 9 pf Trimmer Aerial | 231171 | C16 | 330 pf ± 5% 600 vw Styroseal | 223712 | | C3 | 8 — 78pf Tuning Osc. | 231171 | C17 | 0.04 uf 200 vw Hunts W99 | 2287 50 | | C4 | 1 — 4pf Trimmer Osc. | | C18 | 0.1 uf 100 vw Hi-K Disc | 227 038 | | C5 | 0.01 uf 200 vw Hunts W99 | 228 609 | C19 | 75 uf 10 vw Electrolytic | 229675 | | C6 | 0.005 uf 200 vw Hunts W 99 | 226005 | C20 | 10 uf 3 vw Electrolytic | 228757 | | C7 | 330 pf ± 5% 600 vw Styroseal | 223712 | C21 | 25 uf 3 vw Electrolytic | 229562 | | C8 | 0.01 uf 200 vw Hunts W99 | 228609 | C22 | 5 uf 6 vw Electrolytic | 228253 | | C9 | 4.7 pf ± 5% NPO Tubular | 220219 | C23 | 0.01 uf 200 vw Hunts W99 | 228 609 | | C10 | 0.01 uf 200 vw Hunts W99 | 228 609 | C24 | 25 uf 3 vw Electrolytic | 229562 | | C11 | 25 uf 3 vw Electrolytic | 229562 | C25 | 0.01 uf 200 vw Hunts W99 | 228 609 | | C12 | 330 pf ± 5% 600 vw Styroseal | 223712 | C26 | 0.04 uf 200 vw Hunts W99 | 228750 | | C13 | 0.01 uf 200 vw Hunts W99 | 228609 | C27 | 0.04 uf 200 vw Hunts W99 | 228750 | | C14 | 4.7 pf ± 5% NPO Tubular | 220219 | C28 | 0.1 uf 100 vw Hi-K Disc | 227038 | #### **TRANSFORMERS** | Code No. | Description | Part No. | Code No. | Description | Part No. | |----------------------|--|----------------------------------|----------------|----------------------|-------------------------| | T1
T2
T3
T4 | Ferrite Rod Aerial Oscillator Coil Converter I.F. Transformer 1st I.F. Transformer | 38755
38753
38751
38747 | T5
T6
T7 | 2nd I.F. Transformer | 38749
38155
38158 | # TRANSISTORS | Code No. | Ι | Description | Part No. | Code No. | Description | Part No. | |---------------------------------|---|-------------|----------|---------------------------------|---|----------| | VT1
VT2
VT3
VT4
VT5 | 2N412
2N410
2N410
2N406
2N408 | | | VT6
VT7
MR1
MR2
MR3 | 2N408
2N408
Germanium Diode GEX
Germanium Diode GEX
Germanium Diode GEX | 34 | # **MISCELLANEOUS** | Code No. | Description | Part No. | Code No. | Description | Part No. | |------------|---|----------|----------|----------------------------------|----------| | TH1
SW1 | 130 ohms at 25 degrees C. N.T.C., On/Off Switch (on R14). | 893703 | LS1 | 23-inch Permanent Magnet Speaker | 50000 |