MANUFACTURED \& DISTRIBUTED BY
E.M.I. (AUSTRALIA) LIMITED

INCORPORATED IN N.S.W.)
"HIS MASTER'S VOICE"
"HIS MASTER'S VOICE"

6 PARRAMATTA ROAD HOMEBUSH, N.S.W.

SPECIFICATIONS

POWER SUPPLY:
$230,240,250$ volts, A.C., $50 \mathrm{c} / \mathrm{s}$.
CONSUMPTION:
230 watts.
AERIAL INPUT:
300 ohms balanced.
INTERMEDIATE FREQUENCIES:
Vision Carrier: $36.875 \mathrm{Mc} / \mathrm{s}$.
Sound Carrier: $31.375 \mathrm{Mc} / \mathrm{s}$.
FUSES:
Mains: FS1, FS2 - 2 amps. each.
H.T.: FS3 - 2 amps . FS4 - 250 mA .

VALVES AND SEMI-CONDUCTORS

V1	6ES8	RF Amplifier
V2	6HG8	Frequency Changer
V3	6EH7	1st IF Amplifier
V4	$6 E H 7$	2nd IF Amplifier
V5	6EJ7	3rd IF Amplifier
V6	6CK6	Video Amplifier
V7	6DX8	Noise Inverter and AGC
V8	6BA8	Sync Separator
V9	6BX6	Inter-Carrier Amplifier

VALVES AND SEMI-CONDUCTORS

(Continued)

V10	6BX6	Limiter
V11	6GW8	Sound Amplifier and Output
V12	6GV8	Vertical Oscillator and Output
V13	12AT7	Reactance Valve
V14	6DX8	Horizontal Oscillator \& Driver
V15	6CM5	Horizontal Output
V16	1 S2	EHT Rectifier
V17	6AL3	Damper Diode
MR1	OA90	Video Detector
MR2	OA90	Inter-Carrier Detector
MR3		
MR4	OA210	HT Rectifier
MR5	OA210	HT Rectifier
MR6	M3	AGC Clamp
MR7	BA100	Sync Level Detector
MR8	OA91	Noise Clipper
MR9	AA119	Ratio Detector
MR10	AA119	Ratio Detector
MR11	BA122	Phase Discriminator
MR12	BA122	Phase Discriminator
MR13	OA91	Pulse Clipper
MR14	OA610	Blanking Clamp
MR15	OA610	Rectifier (Remote Control)
MR16	OA610	Rectifier (Remote Control)
MR17	OA91	Protection Diode

CAUTION

The normal $B+$ voltages in these receivers are dangerous. Use extreme caution when servicing. The high voltage at the picture tube anode (17,000 volts) will give an unpleasant shock but does not supply enough current to give a fatal shock. However, secondary human reactions to otherwise harmless shocks have been known to cause injury.

Always discharge the picture tube to the chassis, or to its aquadag coating, before handling the tube. The picture tube is highly evacuated and, if broken, it may violently expel glass fragments. When handling the picture tube, always wear goggles.

DISMANTLING

TO HINGE DOWN CHASSIS

1. Remove back.
2. Swing chassis down.
3. Pull off Channel Selector, Brightness, Picture, Sound and Off-On knobs.
4. Remove two screws holding black fibre cover.
5. Slacken wing-nut under tuner chassis assembly.
6. Unscrew captive screw at top of tuner bracket and withdraw tuner assembly.
7. Tuner may be hooked to left side of
main chassis by dropping tongue on tuner bracket into slot provided. Slide tuner forward and tighten self-tapping screw.

TO REMOVE CHASSIS AND TUNER

1. Unplug yoke, picture tube, speaker and EHT leads.
2. Tilt chassis to approximately 45 degrees and lift clear of pivots.

TO REMOVE PICTURE TUBE

1. Remove chassis and tuner as above.
2. Remove four screws holding picture tube and lift out.

ADJUSTMENTS

MAINS VOLTAGE. Before leaving the factory, the mains input is set to the 240 -volt tap on the transformer. Tappings are also provided for 230 and 250 volts, for use where necessary. To make the alteration, withdraw the captive plug, rotate it until the required voltage is opposite the arrow and then replace the plug.

HORIZONTAL HOLD. This is set at the factory and normally should not need further adjustment. However, after change of components it may be necessary to readjust. The procedure is as follows:

Remove the 12AT7 reactance valve V13 and short-circuit the sync pulses at the test point, between V7 and V8. Adjust the discriminator transformer (T8) slug until the picture floats weakly in lock.

Replace the 12AT7 and adjust the horizontal hold control until the picture again locks weakly.

Remove the short-circuit at the test point and the picture should lock immediately. Check that immediate locking occurs when the channel switch is operated.

CONTRAST RANGE \& NOISE INVERTER. The Contrast Range control may be adjusted by inserting a thin screwdriver into the shaft of the Picture Contrast control, after removing the knob.

1. Turn Picture Contrast control fully clockwise.
2. Turn Noise Inverter potentiometer (RV13) fully clockwise.
3. Select the strongest signal.
4. Advance Contrast Range potentiometer (RV3) until loss of sync occurs, and then back off to a point slightly beyond where sync is fully restored.
5. Adjust Noise Inverter potentiometer (RV13) until loss of sync is observed, and then back off to a point slightly beyond where sync is fully restored.
A.G.C. The pre-set AGC control should be set, when necessary, to the weakest signal i.e., that displaying the most "snow" or grey to white flecks in the picture. Adjust the control to the position which just reduces the snow to a minimum.

The receiver should then be checked on all channels to ensure that no overloading is evident, which may be due to the control being adjusted too far clockwise, and that the minimum noise condition has been achieved for all signals.

This control may need adjustment in strong signal areas to remove "herringbone" patterns.

BOOST VOLTAGE. The boost voltage may be adjusted, where necessary, by means of the pre-set control (RV12) adjacent to the horizontal output transformer. Access to this
control is easier from the reverse side of the chassis, when it has been swung down.

Reduce the picture tube beam current to zero, by means of the Brightness control. The voltage, measured across C130 (.056uF) should be adjusted to 470 volts, which assures optimum picture width and EHT voltage.

Note: Do not use a meter protected with silicon diodes, as this gives a rectifying effect and results in an incorrect reading.

FOCUS. The only time that focus adjustment may be necessary is after replacement of the picture tube. The focus potentiometer, which is a strip pre-set type, is located on the edge of the chassis and adjacent to the EHT rectifier socket and is accessible when the chassis is swung down. Adjust for overall focus across the picture tube face.

LINEARITY. Before adjusting either vertical or horizontal linearity, the picture shift magnets should be neutralised. To do this, the two magnets should be rotated with respect to each other. The neutralised setting is such that, when the complete assembly is rotated, it has little effect on the picture position.

After adjustment has been made for best linearity, the picture may need to be recentred. The linearity should be retouched where necessary.

VERTICAL. The vertical linearity pre-set potentiometer, RV9, is located adjacent to the 6GV8 vertical oscillator and output valve. RV9 should be adjusted, in conjunction with the vertical height control, for best linearity, using a pattern on the screen.

HORIZONTAL. The horizontal linearity coil is situated adjacent to the EHT rectifier,
and may be adjusted from the side of the chassis.

The core should be adjusted for best linearity, using a pattern on the screen. Two positions of the core provide suitable conditions, but the position in which the core is farthest out of the coil is the correct one. Readjustment of the boost control and interlocking adjustments may be necessary if the other position of the core is used.

PICTURE CENTRING. The picture may be centred by rotating the two shift magnets on the tube neck, behind the deflection yoke. Rotate the centring magnet assembly to shift the picture in the required direction, and move one of the magnets with respect to the other, to change the strength of the fields, and so the amount of picture shift.

PICTURE TILT. If the picture is not square with the edges of the mask, loosen the clamping ring on the deflection coils and rotate the assembly until the picture is squared up. Tighten the clamping ring and, if necessary, re-centre the picture.

SERVICE NOTE:

These receivers have a number of regulating devices, such as voltage dependent resistors and diodes, which are designed to correct departures from mean operating conditions.

In fault-tracing, a certain amount of masking of the true cause occurs and defective parts or incorrect operation may be difficult to isolate.

Servicemen are therefore advised to consider carefully any substitution of components or diagnosis of faults, before making adjustments, and so avoid unnecessary complications in repairs.

REMOTE CONTROL

The remote control unit is connected to the receiver by fitting a small 9 -pin plug (PL3) into the socket (SKT3) at the rear of the chassis on the L.H. end of the mains and fuse panel and accessible through the hole in the back. With mains power connected and the receiver mains switched "on," the receiver may be switched "on" or "off" by the slide switch on the side of the remote handpiece, which completes the circuit from the full wave rectifier MR15, MR16, through the relay winding RLB back to earth. Power is supplied to RLB winding which closes and makes contact B1, completing the primary circuit for the receiver mains transformer T 1 ; B2, which supplies an AC voltage from the secondary of the remote operations mains transformer T10 to the index transformers T11 and T12, and the pilot lamp in the handset; B3, which
earths the resistor network in the picture tube grid; B4, which adds filter capacity to the supply voltage for the transistor and RLB.

A condition now exists when channel changing may take place.

In this condition the "rest" or "normal," the base of the transistor is held at a very low potential, and there is little or no potential difference between the emitter and the base.

OPERATING SEQUENCE

After selection of the appropriate channel by the remote control channel switch, if the "mute-start" push-button in the handpiece is operated, the following steps take place:

PSA-1 makes and shorts the limiter HT to earth, via R90, muting the sound.
PSA-2 makes and shorts the emitter of the transistor to earth, causing heavy
current to flow through the transistor and the coil of RLA.

When RLA operates:
Contacts Al close and supply AC mains power to the channel changing motor.
Contacts A2 close and short-circuit PSA2, earthing the emitter of the transistor.
Contacts A3 close and short PSA-1 contacts holding the muting on the sound while channel changing.
Contacts A4 close and short the picture tube grid to earth via R155 resistor, muting the picture.
All actions occur simultaneously.
Since an unequal voltage will appear at the base and emitter of the transistor when a change of tappings has been made on the indexing transformers, current will flow in the collector circuit and the relay RLA will be held closed until the voltages are equalised.

Simultaneously, with the closing of AI contacts when relay RLA is operated, the tuning motor commences to operate and the cam-operated contacts MSB close. This shorts the RLA relay to earth by-passing the transistor. This is a sensing device and stops the channel switching motor at a precise position when it opens at the selected channel. At such time there will be no unequal voltages applied to the base and emitter of the transistor, no current will flow through the relay RLA and it will cease to operate, opening the " A^{\prime} c contacts. The contacts of MSB open at each channel position, but if heavy current is flowing through the transistor due to unequal voltage applied at the base and emitter, this holds RLA closed, and the motor will continue to operate until the selected position has been reached.

When the relay RLA ceases to operate:
Contacts A4 open and remove short and picture appears.
Contacts A3 open and remove short and sound is restored.
Contacts A2 open and remove short on PSA-2, Mute-Start switch.
Contacts Al open and remove mains supply from motor.
All actions occur simultaneously.
When the "On-Off" switch (SD) in the handpiece is switched "off," relay RLB operates and opens contacts:

B4, to remove the additional filter across the relay and transistor supply voltage.
B3, to remove the earth from the CRT grid voltage divider, immediately placing a positive bias on the grid to allow beam current to flow and discharge the EHT, preventing a bright spot appearing on the screen.
$B 2$, to remove $A C$ voltage from the indexing transformers in the remote control unit.
Bl, to remove power from the receiver mains transformer.
A pin in the centre of the plug PL3, when inserted into the socket SKT3, open-circuits three leaf spring contacts which are used for the following purposes:

MSAI contacts are in parallel with the mains "on-off" switch (SD) on the remote control unit.
MSA2 completes the speaker transformer secondary.
MSA3 earths the contrast control voltage divider network.
When the plug PL3 is inserted:
MSAl contacts open and remote control "on-off" switch (SD) becomes operative.
MSA2 removes the earth on the contrast control circuit and substitutes the remote control contrast potentiometer.
MSA3 transfers the sound output for the speaker circuit into the remote control unit where selection of speakers and/or hearing-aid outlet is made, together with control of volume.
Channel selection may be effected immediately the receiver is switched on, unlike previous models, when a delay was entailed while the valves reached operating temperatures.

Volume of the receiver may be adjusted at the remote handpiece for both local and remote speakers by variation of the sound limiter HT using the remote volume control.

Two sockets are available on the side of the remote handpiece for hearing-aid plugs. Insertion of the hearing-aid plug into SKT4 with the "local-remote" speaker switch in the remote position, removes sound from the speaker and supplies sound to the hearing-aid only. If SKT5 is used, sound is supplied to the hearing-aid and the remote speaker. A separate volume control is provided for hearing-aid adjustment; however, no hearingaid sound will be available if the main or remote speaker volume control is turned to minimum position.

Hearing-aid sound, operating with separate control of volume, is available either with remote control or local speakers.

For the remote controls to be fully effective, the receiver sound and picture controls should be well-advanced. If these controls are so set, removal of the remote control plug PL3 will not disturb the contrast or sound when the receiver is operating normally. All adjustments may then be made at the receiver.

INTER-CARRIER ALIGNMENT

The following equipment is necessary:
(i) An RF Oscillator, capable of being set accurately to $5.5 \mathrm{Mc} / \mathrm{s}$.
(ii) A 20,000 ohms/volt multimeter.
(iii) A peak-to-peak detector, as shown in Fig. 1.

Fig. 1. Peak-to-Peak Detector.

5.5 MC/S. TRAP L42

L42 is a trap tuned to $5.5 \mathrm{Mc} / \mathrm{s}$. This is set at the factory and normally should not need further adjustment.

Should it be necessary to re-tune L42, the following method is recommended.
(1) Inject $5.5 \mathrm{Mc} / \mathrm{s}$ at approximately 100 mV , between the junction of L28 and MR1, and earth.
(2) Connect the input of the peak-to-peak detector to the CRT cathode, pin 7.

Connect the output of the peak-topeak detector to a multimeter, set to a low DC voltage range.
(3) Adjust the core of L42 to give a minimum reading on the meter.
PEAKING COIL ADJUSTMENT
Connect the $5.5 \mathrm{Mc} / \mathrm{s}$ oscillator to the junction of L31 and MR2. Connect the multimeter, set to a low DC voltage range, across R89. Adjust the core in L33 for maximum response.
INTER-CARRIER TRANSFORMER IFT5
With the $5.5 \mathrm{Mc} / \mathrm{s}$ oscillator and the multimeter still connected as above, adjust both primary and secondary cores in IFT5 for maximum response.

RATIO DETECTOR TRANSFORMER IFT6

With the $5.5 \mathrm{Mc} / \mathrm{s}$ oscillator still connected as above, connect the multimeter between the junction of R92 and R93, and earth. Adjust the secondary core (nearest chassis) so that a positive or negative reading is obtained. Adjust the primary core so that this reading shows a maximum. Then adjust the secondary for zero reading. Instead of the $5.5 \mathrm{Mc} / \mathrm{s}$ oscillator, an off air signal may be used for all the above adjustments.

VISION I.F. ALIGNMENT

The following equipment is necessary:
(i) A sweep generator, covering the range 28 to $40 \mathrm{Mc} / \mathrm{s}$.
(ii) A marker generator, covering the same range.
(iii) A C.R.O.

These instruments should be interconnected as described in the instructions supplied with the sweep generator. The sweep generator should be terminated with a resistor equal to its output impedance and connected to the receiver as shown in Fig. 2.

Fig. 2.
Because of the high gain of all receivers, care should be taken to ensure that all components replaced are on short leads and are placed in exactly the same position as the original part.

Care must also be taken to prevent feedback in interconnecting leads of the alignment equipment.

NOTE (1). Throughout the alignment, the display should be adjusted so that the response is accurately set between the reference level and the base line from a signal of about 2 volts peak-to-peak. The output of the IF strip should be maintained at that level by varying the output from the sweep generator and not the gain of the display unit.

NOTE (2). Coupling between stages will not require adjusting, unless either IFT1, IFT2 or IFT3 has been replaced.

NOTE (3). Cores in L21, L24, L26, L26a, IFT3 and L31 are set in the position furthest from the chassis.

Cores in L22, L23, IFT1, L25, and L26 are set in position nearest the chassis.
OPERATION 1.
(a) Connect a bias supply of - 18 volts across IF AGC smoothing capacitor C59.
(b) Connect display unit between L29 and R38 junction and earth.
(c) Remove cores from L24, L26, L26a and L31.

OPERATION 2.
(2) Using the terminating network as shown in Fig. 1, connect sweep output between pin 2 of V 5 and earth.
(b) Adjust the cores of L27 and IFT3 to obtain the response of Fig. 3a (Stage 1).
(c) If IFT3 has been replaced it will be necessary to adjust the coupling by closing the spacing of the two windings of IFT3 until desired bandwidth is achieved.
(d) If a dip appears in the response, remove it by screwing the core in L25 away from the chassis.

OPERATION 3.
(a) Remove the sweep from V5 and connect it as shown by Figure 1 to pin 2 of V4.
(b) Maintaining the level of the display unit constant by varying the sweep output, adjust the cores of L25 and IFT2 to obtain the response of Figure 3b (Stage 2).
(c) If a dip appears in the response, remove it by screwing the core in L23 away from the chassis.
(d) If IFT2 has been replaced, it will be necessary to adjust the coupling by closing the spacing between the two windings of IFT2 until the desired bandwidth is achieved.

OPERATION 4.
(a) Remove the sweep from V4 and connect it to pin 2 of V3.
(b) Adjust the cores of L23 and IFT1 to obtain the response of Figure $3 c$ (Stage 3)
(c) If a dip appears in this response, remove it by shorting out the coaxial lead from the tuner.
(d) If IFTI has been replaced, it will be necessary to adjust the coupling by closing the spacing of the windings of IFTI until the desired bandwidth is achieved.

OPERATION 5.

(a) Remove sweep from V3 and connect it to the IF test point on tuner, located adjacent to the converter valve.

Switch tuner to the position between Channel 11 and Channel 0 .
(b) Adjust the cores in L11 (IF output coil located adjacent to V2 on the tuner, and L21 to obtain the response of Figure 3d (Stage 4).

OPERATION 6.

(a) Insert a core into L24 and adjust to a minimum at $38.375 \mathrm{Mc} / \mathrm{s}$ by varying the spacing between L23 and L24. Ensure that the response at 38.375 Mc / s is at least 60 dB below peak response. To do this, increase the sweep generator output by 40 dB , reset the base line with the vertical shift control if necessary, and the 20 dB will represent the -60 dB point required below the reference level.
(b) Adjust the core in $L 22$ to read a minimum at $28.375 \mathrm{Mc} / \mathrm{s}$.
(c) Insert a core in L26 and adjust together with the spacing of L25 and L26 to ensure that the responses at $31.375 \mathrm{Mc} / \mathrm{s}$ is between 25 and 28 dB below the peak response. Use method in (a) but increase output by only 20 dB .
(d) Insert a core in L31 and adjust by varying the coupling between L31 and L27 so that the response at 29.875 Mc / s is 35 dB below the peak response. (It may be found necessary to readjust L 27 to maintain the response shape as shown in 3 e (Stage 5).
(e) Adjust L26a on former of IFT2, such that it widens the response of L24, but at the same time, care must be taken to ensure that it leaves the main response shape substantially unchanged.
(f) Remove bias battery, and check that the response curve remains substantially unchanged.
(g) Replace bias and connect display unit to test point on L33. Check to see that the response to the sound IF detector is similar to response of 3 f (Stage 6).
(h) Seal the coils of L24, L26, L26a, L3 1 and also IFT1, IFT2, and IFT3 with a light application of A1 adhesive.

Fig. 3

FOR: RV6
READ: V6

"H.M.V" CHASSIS TYPE V3.

PARTS LIST - CHASSIS V3

REF.	PART No.	DESCRIPTION	REF.	PART NO.	DESCRIPTION
		RESISTORS	RESISTORS (Continued)		
	NOTE: All res	ors are $\frac{1}{2}$ watt rating and $\pm 10 \%$	R67	740-0132	82K
		ce, except where noted.	R68	740-0232	39 K
R21	740-0412	820 ohms	R69	740-0782	120K
R22	740-0032	2.2 K	R70	740-0862	18K
R22a	740-0273	150 ohms Morganite	R71	740-0082	10K
R23	740-0983	22 ohms Morganite	R72	740-0082	10K
R24	740-0653	100 ohms Morganite	R73	742-1052	56K 1W
R25	742-0512	2.2 K IW	R74	740-0092	15K
R26	740-0102	22K	R75	742-0092	47K IW
R27			R76	740-0092	15K
R28	740-0412	820 ohms	R77	740-0202	2.2M
R29	740-0653	100 ohms Morganite	R78	740-0242	33 K
R29a	740-0983	22 ohms Morganite	R79	740-0202	2.2 M
R30	742-0512	2.2 K IW	R80	740-0082	10K
R30a	740-0102	22K	R81	742-0132	220K lW
R31	740-0412	820 ohms	R82	740-0152	150K
R31a	740-0062	3.9 K	R82a	742-0162	390K 1W
R32	740-0273	150 ohms Morganite	R83		
R33	750-0672	1.5 K 5 W	R84		
R34			R85	740-0293	270 ohms Morganite
R35	740-0322	1.2K	R86	740-0022	1 K
R35a	740-0092	15K	R87	740-0142	100K
R36	740-0732	12K	R88	740-0242	33K
R37	740-0043	2.7 K	R89	740-0082	10K
R38	740-0252	1.5 K	R90	749-0052	$47 \mathrm{~K} \pm 20 \% 2 W$
R39	$\begin{gathered} \text { Part of } \\ 259-1261 \end{gathered}$	2.7K 1W. Former for Equalising Coil	$\begin{aligned} & \text { R90a } \\ & \text { R91 } \end{aligned}$	740-0032	2.2K
R40	740-0922	330 ohms	R92	740-0112	27K
R41	750-0702	$2.7 \mathrm{~K} \pm 5 \% 7 \mathrm{~W}$	R93	740-0112	27K
R42	740-0483	56 ohms Morganite	R94	740-0122	47K
R43			R95	740-0082	10K
R44	740-0182	470K	R96	740-0082	10K
R45	742-0192	1 M IW	R97	740-0152	150K
R45a	740-0862	18K	R98	740-0152	150K
R46	740-0082	10K	R99	740-0702	56K
R47	740-0072	4.7K	R100		
R48	740-0242	33K	R101	742-0022	4.7K 1W
R49a	742-0642	180K IW	R102	742-0132	220K IW
R49b	742-0172	470 K IW	R103	740-0052	3.3 K
R50a	740-0382	6.8 K	R104	740-0292	270 ohms
R50b	742-0122	150K 1W	R105	740-0512	$100 \mathrm{~K} \pm 20 \%$
R51	750-0622	250 ohms $\pm 5 \%$ 10W Cemcoat	R106	740-0512	100K $\pm 20 \%$
R52	749-0142	$1 \mathrm{~K} \pm 20 \% 2 \mathrm{~W}$	R107		
R53			R108		
R54	750-0632	8.2K $\pm 5 \%$ 4W Metox	R109	740-0653	100 ohms Morganite
R55	742-0172	470 K IW	R110	740-0062	3.9 K
R56	742-0212	3.3 M IW	R111	742-0112	100K 1W
R57	742-0772	3.9 M IW	R112	740-0232	39 K
R58	742-0772	3.9 M IW	R112a	740-0142	100K
R59	742-0982	1.2M IW	R112b	740-0082	10K
R60	749-0232	27K 2W	R113	740-0082	10K
R61	750-0122	47K	R114	740-0082	10K
R61a	750-0662	3.9 K 4 W	R115	740-0082	10K
R62	740-0252	1.5 K	R116	742-0172	470K IW
R63	740-0252	1.5 K	R117	742-0022	4.7K IW
R64	740-0082	10K	R1170	742-0823	270 ohms 1W Morganite
R65	740-0212	3.3M	R118	740-0082	10K
R66	740-0242	33 K	R119	740-0232	39 K

PARTS LIST - CHASSIS V3

PARTS LIST - CHASSIS V3

\begin{tabular}{|c|c|c|c|c|c|}
\hline Ref. \& part no. \& description \& Ref. \& Part no. \& description

\hline \multicolumn{3}{|r|}{CAPACITORS (continued)} \& \multicolumn{3}{|r|}{CAPACITORS (continued)}

\hline C72 \& \multirow[t]{3}{*}{283-1701} \& \multirow[t]{3}{*}{. $047 \mathrm{uF} \pm 10 \% 400 \mathrm{~V}$ Polyester} \& Cl 20 \& 271-0961 \& $560 \mathrm{pF}+100 \%-10 \%$ K2000 Ceramic

\hline C73 \& \& \& C121 \& 283-1581 \& . $0047 \mathrm{uF} \pm 10 \% 400 \mathrm{~V}$ Polyester

\hline C75 \& \& \& C122 \& 271-0911 \& . 003 uF 500V Ceramic

\hline C76 \& 271-0731 \& $$
\begin{aligned}
& .047 \mathrm{uF}+30 \%-20 \% 25 \mathrm{~V} \\
& \text { Red Cap }
\end{aligned}
$$ \& \multirow[t]{2}{*}{$$
\mathrm{C} 124
$$} \& 271-0991 \& 220 pF $\pm 10 \%$ 2KV Ceramic Tube

\hline C77 \& 271-0591 \& . 0027 uF K2000 Disc \& \& 271-1001 \& $220 \mathrm{pF} \pm 20 \%$ K2000 Ceramic

\hline C78 \& 271-0681 \& $12 \mathrm{pF} \pm 5 \%$ NPO Disc \& \multirow[t]{3}{*}{C126} \& \multirow[t]{2}{*}{Part of} \& \multirow[t]{2}{*}{. $022 \mathrm{uF} \pm 20 \% 600 \mathrm{~V}$ Polester}

\hline C79 \& 271-0681 \& $12 \mathrm{pF} \pm 5 \%$ NPO Disc \& \& \&

\hline C80 \& 271-0471 \& $6.8 \mathrm{pF} \pm \frac{1}{4} \mathrm{pF}$ NPO Disc \& \& 908-0591 \& $330 \mathrm{pF} \pm 10 \%$ 5KVW Ceramic

\hline C81 \& 271-0591 \& . 0027 uF K2000 Disc \& C127 \& 284-1281 \& $.22 \mathrm{uF} \pm 20 \%$ 1000V Polyester

\hline C82 \& 271-0621 \& . 001 uF Lead Thru \& \multirow[t]{2}{*}{C128} \& 271-0901 \& \multirow[t]{2}{*}{$68 \mathrm{pF} \pm 20 \%$ Disc 3 KVW Ceramic}

\hline C83 \& 271-0601 \& $10 \mathrm{pF} \pm 5 \%$ NPO Disc \& \& \&

\hline C83a \& 271-0911 \& . 003 uF 500V Ceramic \& C129 \& 284-2701 \& . $047 \mathrm{uF} \pm 10 \%$ 1000V Polyester

\hline C84 \& 271-0771 \& $100 \mathrm{pF} \pm 5 \%$ NPO Disc \& C130 \& 284-1211 \& . $056 \mathrm{uF} \pm 10 \%$ 1000V Polyester

\hline C85 \& 280-1501 \& $100 \mathrm{pF} \pm 5 \% 600 \mathrm{~V}$ Styroseal \& C131 \& 283-1781 \& $.22 \mathrm{uF} \pm 10 \%$ 400V Polyester

\hline C86 \& 280-1501 \& $100 \mathrm{pF} \pm 5 \% 600 \mathrm{~V}$ Styroseal \& \multirow[t]{2}{*}{C132} \& 271-1051 \& \multirow[t]{2}{*}{$18 \mathrm{pF} \pm 10 \%$ Disc}

\hline C87 \& 283-1501 \& . $001 \mathrm{uF} \pm 10 \% 400 \mathrm{~V}$ Polyester \& \& \multirow{3}{*}{271-0781} \&

\hline C88 \& 269-0781 \& 4 uF 25 VW Electro \& \multirow[t]{2}{*}{C13

c134} \& \& . 035 uF 2KVW Double Disc

\hline C89 \& 283-1581 \& . 0047 uF 400V Polyester \& \& \&

\hline C90 \& 271-0961 \& $560 \mathrm{pF}+100 \%-10 \%$ K2000 Ceramic \& C134 \& 271-0781 \& .035 uF 2KVW Double Disc Ceramic

\hline C91 \& \multirow[t]{2}{*}{283-1121} \& \multirow[t]{2}{*}{. $01 \mathrm{uF} \pm 10 \% 160 \mathrm{~V}$ Polyester} \& C135 \& 269-0761 \& 25 uF 50VW Electro

\hline C92 \& \& \& \multirow[t]{3}{*}{C136} \& \multirow[t]{3}{*}{269-1091} \& \multirow[t]{2}{*}{10 uF 50VW Electro}

\hline C93 \& 269-0061 \& 16 uF 300VW Electro \& \& \&

\hline C94 \& 269-1171 \& 25 uF 6.4V Electro \& \& \& COILS

\hline C95 \& 271-1061 \& $15 \mathrm{pF} \pm 10 \%$ N330 Tube \& L21) \& \multirow[t]{2}{*}{259-1321} \& \multirow[t]{2}{*}{$$
\left\{\begin{array}{l}
1 \text { st IF Grid Coil } \\
28.375 \mathrm{Mc} / \mathrm{s} \text { Trap }
\end{array}\right.
$$}

\hline C96 \& \multirow[t]{2}{*}{283-1701} \& \multirow[t]{2}{*}{. $047 \mathrm{uF} \pm 10 \% 400 \mathrm{~V}$ Polyester} \& L22 \& \&

\hline C97 \& \& \& L23 \& \multirow[t]{2}{*}{259-1391} \& \multirow[t]{2}{*}{$\left\{\begin{array}{l}\text { lst IF Anode Coil }\end{array}\right.$}

\hline C98 \& 269-1171 \& $25 \mathrm{uF} \pm 6.4 \mathrm{~V}$ Electro \& L24 \& \&

\hline C99 \& 283-1661 \& . 022 uF $\pm 10 \% 400 \mathrm{~V}$ Polyester \& L25 \& \multirow[t]{2}{*}{259-1401} \& \multirow[t]{2}{*}{$$
\left\{\begin{array}{l}
\text { 2nd IF Anode Coil } \\
31.375 \mathrm{Mc} / \mathrm{s} \text { Trap }
\end{array}\right.
$$}

\hline C100 \& 283-1541 \& . $0022 \mathrm{uF} \pm 10 \% 400 \mathrm{~V}$ Polyester \& L26 \& \&

\hline C101 \& 269-0981 \& 50 uF 300 V Electro with C 104

and C 105 \& L26a \& $$
\begin{gathered}
\text { Part of } \\
906-0631
\end{gathered}
$$ \& 38.375 Mc/s Trap

\hline C102 \& 283-1541 \& . 0022 uF $\pm 10 \% 400 \mathrm{~V}$ Polyester \& L27 \& 259-1411 \& 3rd IF Anode Coil

\hline C103 \& 283-1541 \& . 0022 uF $\pm 10 \% 400 \mathrm{~V}$ Polyester \& L28 \& 259-0955 \& Grid Peaking Choke

\hline \multirow[t]{2}{*}{C104} \& \multirow[t]{2}{*}{269-0981} \& \multirow[t]{2}{*}{24 uF 300 V Electro with Cl 101 and Cl 05} \& \multirow[t]{2}{*}{L30} \& \multirow[t]{2}{*}{259-1432} \& Choke

\hline \& \& \& \& \& Choke
Choke

\hline C105 \& 269-0981 \& 100 uF 25 V Electro with Cl 101 and Cl 04 \& L31 \& $$
\begin{gathered}
\text { Part of } \\
259-1411
\end{gathered}
$$ \& 29.875 Mc/s Trap

\hline C106 \& 283-1621 \& . $01 \mathrm{uF} \pm 10 \% 400 \mathrm{~V}$ Polyester \& L32 \& 259-1432 \& Choke

\hline C107 \& 283-1281 \& . $22 \mathrm{uF} \pm 10 \% 160 \mathrm{~V}$ Polyester \& L33 \& 259-1421 \& Intercarrier Detector Coil

\hline C108 \& 283-2361 \& $1 \mathrm{uF} \pm 20 \% 160 \mathrm{~V}$ Polyester \& L34) \& 259-1261 \& Equalising Coil

\hline C109 \& 283-1721 \& . 068 uF $\pm 10 \% 400 \mathrm{~V}$ Polyester \& L35 \& \&

\hline C110 \& 271-0951 \& $47 \mathrm{pF} \pm 10 \%$ Ceramic Tube \& L36 \& 908-0621 \& Video Peaking Transformer

\hline C111 \& 283-1321 \& . $47 \mathrm{uF} \pm 10 \% 160 \mathrm{~V}$ Polyester \& L37 \& 259-0045 \& Antiparasitic Coil

\hline C112 \& 271-0951 \& $47 \mathrm{uF} \pm 10 \%$ Ceramic Tube \& L38 \& 259-0045 \& Antiparasitic Coil

\hline C113 \& 283-1581 \& . $0047 \mathrm{uF} \pm 10 \% 400 \mathrm{~V}$ Polyester \& L39 \& 259-0045 \& Antiparasitic Coil

\hline C114 \& 283-1581 \& . 0047 uF $\pm 10 \% 400 \mathrm{~V}$ Polyester \& L40 \& 259-0045 \& Antiparasitic Coil

\hline C115 \& 283-1621 \& . $01 \mathrm{uF} \pm 10 \%$ 400V Polyester \& L41 \& 259-1251 \& Linearity Coil

\hline C116 \& 283-1621 \& . $01 \mathrm{uF} \pm 10 \% 400 \mathrm{~V}$ Polyester \& L42 \& 259-1541 \& 5.5 Mc/s Trap Coil

\hline C117 \& 280-1851 \& $680 \mathrm{pF} \pm 10 \% 600 \mathrm{~V}$ Styroseal \& \& \&

\hline \multirow[t]{2}{*}{C118} \& \multirow[t]{2}{*}{271-0961} \& \multirow[t]{2}{*}{$560 \mathrm{pF}+100-10 \%$ K200} \& \& \multicolumn{2}{|r|}{POTENTIOMETERS}

\hline \& \& \& RV1 \& 677-1341 \& 500K Curve ' $\mathrm{A}^{\text {' - Brightness }}$

\hline C119 \& 271-0911 \& . 003 uF 500V Ceramic \& RV2 \& 677-0911 \& 1 M Curve ' ${ }^{\text {' }}$ ' Type EC-AGC

\hline C119a \& 271-0731 \& . $047 \mathrm{uF}+30 \%-20 \% 25 \mathrm{~V}$ \& RV3) \& 677-1152 \& \{50K Curve 'A'-Contrast Range

\hline \& \& Red Cap \& RV4 ${ }^{\text {S }}$ \& $677-1152$ \& 225K Curve 'A'-Picture Contrast

\hline
\end{tabular}

REF.	PART No.	DEsCRIPTION		REF.	PART No.

REF.	PART No.	DESCRIPTION		REF.	PART NO.

H. CLARK PTY. LTD. Printers MARRICKVILLE, N.s.W.

"H.M.V." OHASSIS TYPE V3

