

Astor house, 16- 73 Sturt Street 'ou. inelvcurne.
SEFVİC DATA

Date: 18-8-61
Page: 1

A'TGa MOL,FL "FSW"

POR ${ }^{\text {rin }}$ ABLE

7 TRA -IETOR SUPEKHETERODYNE BROADCAST RECEIVER

'I'LNING RANGE:
INTERMEDIATE FREQUENCY:
BATTERY SUPPLY:
BATTERY CONSUMPTION:
POWER OUTPUT:
TRANSISTOR COMPLEMENT

GERMANIUM DIODES:

530 - 1630 Kilocycles
455 Kilocycles
9 Volts DC. (internal battery)
8.5 mA . (no signal)
. 3 Watt (undistorted)
2N412 Mixer-Oscillator
2N410 I.F. Amp. l.
2N410 I.F. Amp. 2.
2N406 Audio Amplifier
2N406 Audio Driver
2N408 Audio Output
$2 \mathrm{~N} 4 \mathrm{C}_{3}$ Audic Jutpuí
「「295 AGC.
IN295 Detector / ACr

SERVICE INSTRUCTIONS-electrical

ALIGNMENT EQUIPMENT

Signal Generator - modulated 400 cps .
Output Meter - 15 ohm impedance.
Series Capacitor - Sig. gen. for I.F.T. alignment .l MF Part No. Cll3.

Alignment Tools
(a) Flat metal blade each end - Part No. Al01/2076 for I.F.T. and osc. coil iron core adjustment.
(b) Chisel point type Part No. M195 for trimmer core adjustment.

ALIGNMENT CONDITIONS

The circuit board does not have to be removed from the leather case for alignment purposes.

Unscrew the three captive screws fastening the rear flap of case, open flap upward.

Volume Control - maximum volume (fully clockwise)
Output Level - 50 milliwatts, speaker voice coil disconnected.
Output Meter - across secondary of output transformer.
Connection
Supply Voltage - 9 volt battery
Source
INTERMEDIATE FREGJ ENCY TRANSFORMER ALIGNMENT
Oper Generator Generator Dummy
No. Connection Frequency Aerial Instructions

1. To junction of $455 \mathrm{Kc} / \mathrm{s}$. 1 MF cond. in term. 4 of rod aerial and . 04 cond.circuit No. 2.
2. As oper. 1. $455 \mathrm{Kc} / \mathrm{s}$ As oper. 1. 3. As oper. 1. $455 \mathrm{Kc} / \mathrm{s}$ As oper. 1.

Turn tuning gang cond to high freq. end stop, plates full open. Peak iron core of 3rd I.F. trans. for max. output.

Peak iron core of 2nd I.F. trans. for max. output.

Peak iron core of lst I.F. trans. for max. output.
4. Repeat operations 1, 2 and 3.

DIAL POINTER SETTING

1. Prise the push-in type metal insert from the centre of the transparent tuning knob.
2. Loosen the three $\frac{1}{4}$ " $\times 3 / 32^{\prime \prime}$ Whit. csk. hd. screws fastening the washer in the centre of the tuning knob.
3. Fully mesh condenser gang plates, then set centre of end of travel spot near $535 \mathrm{Kc} / \mathrm{s}$ on the dial reading to align with centre of irdicator line on the dial background.
4. Securely tighten the three $3 / 32^{\prime \prime}$ screws in centre washer then refit pushin metal insert.

BROADCAST ALIGNMENT

A. To inject a sienal into the receiver rod aerial, connect to the active terminal of the signal generator approximately two feet of aerial wire, then fashion the wire into a vertical position.
B. Place receiver chassis so that ferrite rod aerial is uppermost and horizontal and so that the movable winding end of the ferrite rod points to the 2 ft . of aerial wire. A distance of not less than 1 ft . is to be between the end of the ferrite rod and the 2 ft . of vertical aerial wire attached to the signal generator.

Oper. Generator
No. Connection
Generator
Frequency
Instructions

1. Refer para. A \& B $600 \mathrm{Kc} / \mathrm{s}$
2. As oper. 1.
$1400 \mathrm{Kc} / \mathrm{s}$

Turn tuning gang until centre of $600 \mathrm{Kc} / \mathrm{s}$ spot on dialreading aligns with centre of indicator line on dial background. Peak iron core of oscillator coil for max. output while rocking gang to and fro through signal.

Set dial $1400 \mathrm{Kc} / \mathrm{s}$ spot on dial to pointer line. Peak oscillator and aerial trimmer condenser for maximum output.
3. Repeat operation No. 1.
4. Repeat operation No. 2.

Tuning range after alignment - 530:1630 Kilocycles.

PRECAUTIONS WHEN TESTING TRANSISTOR RECEIVERS

A. A transistor is extremely sensitive to heat. If a soldering iron is to be used close to a transistor move the transistor or place nonconductive material between the iron and transistor.
When making soldered connections to the leads of the transistors hold the lead which is being soldered between the heat source and transistor body with pliers; excess heat will be dissipated away into the pliers. Use a soldering iron which supplies just the required heat for satisfactory soldering of connections.
B. When checking components, cut the long pigtail of the component in preference to unsoldering from the circuit board. Components checked in this way may be returned into the circuit by pressing the ends of the pigtail together then solder. Faulty components should be removed from the circuit board by cutting through the body of the component leaving two short stubs of wire protruding (approx $\frac{1}{8}$ ") above the circuit board. The pigtail leads of the new component are to be soldered to these stubs.
C. A continuity meter must not be applied to the receiver wiring with the transistor in circuit. A transistor must not be checked for continuity with an ohmmeter as the applied voltage and resultant excess current flow may result in permanent damage to the transistor. A voltmeter of at least 20,000 ohms/volt or a high impedance vaccuum tube type voltmeter is a safe means of measuring circuit voltage.
D. A screwdriver or similar instrument must not be used to short components together or to the common positive. The use of this method of checking for the existance of voltage or signal clicks may result in permanent. damage to the transistors and components.

FAULT LOCATION GUIDE - CLICK TEST

Connect one end of a. 6.8 K ohm resistor to common positive. Touch the other end on and off the following points and listen for clicks. Volume control at maximum.

CHECK POINT Transistor Base	$\begin{aligned} & \text { LOCATION } \\ & \text { Circuit Numbers } \\ & \text { at Junction Point } \end{aligned}$	STRENGTH OF CLICK
2N408 Output 2N4O8 Output 2N406 Driver 2N406 First Audio 2N410 I.T.2. 2N410 I.F.1. 2N412 Converter	No. 25 \& Driver secondary No. 26 \& Driver secondary Nos. 49, 53, 23 Nos. 45, 46, 19 Pin 5 I.F.T. 2 Pin 4 I.F.T.I. Nos • 31, 32, 2	very weak very weak loud loud very loud weak loud

FAULT LOCATION GUIDE - GENERATOR TEST

Connect generator through a 0.1 mf . capacitor to the following points:CAUTION: Always start with low generator output. Strong signals, may, overload the receiver, or cause the AGC to function. Set volume control at maximum.

CHECKPOINT	LOCATI ON Circuit Nos. at Junction Point	SIG NAL GENERATOR FREQUENCY	SIGNAL STRENGTH
$\overline{2} \mathrm{~N} 408$ Output Base 2N408 Output Base 2M406 Driver Base 2N406 First Audio Base Det.output at vol.cont. Turn tuning capacitor fu Det.output at Diode 2N410 I.F. 2 Base 2N410 I.F.l Base 2N412Converter Base Tune receiver to generat 2N412 Converter Base	No. 258 Driver sec. No. 26 \& Driver sec. Nos. 49, 53, 23 Nos. 45, 46, 19 Nos. 18, 44 open. Pin 5 I.F.T. 3 Pin 5 I.F.T. 2 Pin 4 I.F.T. 1 No. 2 and aerial sec at broadcast frequenc No. 2 and aerialsec.	Audio Aurizo Audio Audio Audio $455 \mathrm{Kc} / \mathrm{s}$ y. Sign. Freq.	Weak Weak Increased level Further increase Further increase Weak Increased level Further increase Further increase Same level as at $455 \mathrm{Kc} / \mathrm{s}$.

SERVICE INSTRUCTIONS - mechanical

1. TO REMOVE CIRCUIT BOARD FROM CABINET

A. Remove the metal insert from the centre of the tuning knob.
B. Remove the three $3 / 32^{\prime \prime}$ Whit. screws fastening the metal washer into the centre of the tuning knob.
C. Remove the metal washer and the tuning knob from the condenser gang bush.
D. Remove the push-on type krob from the volume control spindle.
E. Unscrew the three captive screws from rear flat of leather case.
F. Prise plug out of socket in battery then remove the battery.
G. Remove the six screws fastening circuit board to cabinet.
H. Pull slide connector off speaker terminal.
I. Lift circuit board out of cabinet.
J. Refitting of the circuit board to the cabinet is the reverse proceedure to removing it.

TO CHANGE DIAL READI G

- A. Remove the tuning dial knob from the condenser gang bush as detailed in paragraphs $1 \mathrm{~A}, \mathrm{~B}$ and C .
B. The dial reading is a pressfit into the tuning knob and is located by four spigots.
C. Carefully prise or pull the dial reading out of the knob.
D. Locate the slots in the new dial reading with the spigots of the tuning knob then press the dial reading into the knob.
E. Refit the tuning dial knob to thecondenser gang bush then the centre washer and the trree $3 / 32^{\prime \prime}$ Whit. screws. Do not tighten the screws.
F. To set the tuning dial knob in the correct position refer to the Broadcast alignment procedure.

TO REMOVE THE BATTEFY

A. Switch the receiver OFF.
B. Unscrew the three captive screws fastening rear flap of leather case.
C. Open flap, lift battery upward and disconnect the two pin plug.
D. Fitting a new battery is a reverse procэdure to removing it.

RECEIVE S STIAL NUMBER
A. Unscrew the three captive screws fastening rear flap of leather case.
B. Serial number is stamped into a metal tag located on the board between the tring gang and the driver transformer.

STORAGE WHEN OUT OF USE
It is not advisable to leave an exhausted battery in the receiver. If the receiver is stored away or not required for long periods, even partly-used batteries should be removed and stored in a dry, cool place. This is a precautionary measure against the swelling and corroding action of worn-out batteries, which applies to all battery operated devices, such as torches, etc.

Do $n t$ polish the leather case or metal and plastic sections with an abrasive material, motor car polish, boot polish or similar household cleaning fluids as permanent damage may result to the finish of the case and sections. To restore the lustre of the leather case wipe with a soft cloth dampen with water and lightly polish with a neutral wax.

Circuit No.	Condensers	Tol.	$\begin{aligned} & \text { Rating } \\ & \text { D.C. } \end{aligned}$	$\begin{aligned} & \text { Part } \\ & \text { No. } \end{aligned}$
1	Tuning, two gang			4000-018-01
2	. 01 MF Ceramic	+80\%-20\%	33 V	C391
3	. 01 MF Ceramic	+80\%-20\%	33V	C391
4	. 01 MF Ceramic	+80\%-20\%	33 V	C391
5	220 ;F Tubular ceramicon	$\pm 5 \%$	33V	C392
6	. 01 MF Ceramic	+80\%-20\%	33V	C391
7	10 MF Electrolytic	+250\%-10\%	6 V	C322
8	8.2 pF Disc Ceramicon	+5\%	500 V	C404
9	220 pF Tubular ceramicon	$\pm 5 \%$	33 V	C392
10	. 01 MF Ceramic	+80\%-20\%	33 V	C391
11	100 MF Electrolytic	+250\%-10\%	12V	C 457
12	. 01 MF Ceramic	+80\%-20\%	33 V	C391
13	27 pF Disc ceremicon	$\pm 5 \%$	500 V	C451
14	220 pF Tubular ceramicon	$\pm 5 \%$	33 V	C392
15	. 01 MF Ceramic	+80\%-20\%	33V	C391
16	. 01 MF Metallised paper	$\pm 20 \%$	200V	C459
17	. 01 MF Ceramic	+80\%-20\%	33 V	C391
18	2 MF Electrolytic	+250\%-10\%	6 V	C 323
19	2 MF Electrolytic	+250\%-10\%	6 V	C323
20	3-306F Wire wound trimmer			PC663
21	. 01 MF Ceramic	+80\%-20\%	33 V	C391
22	50 NF Electrolytic	+250\%-10\%	3V	C307
23	2 MF Electrolytic	+250\%-10\%	6 V	C323
24	50 MF Electrolytic	+250\%-10\%	3V	C307
25	. 01 MF Ceramic	+80\%-20\%	33 V	C391
26	. 01 MF Ceramic	+80\%-20\%	33V	C391
27	. 01 MF Ceramic	+80\%-20\%	33V	C391
28	100 MF Electrolytic	+250\%-10\%	12V	C457
29	5-30 pF Trimmer			4000-023-01
30	Resistors	Tol. \pm	Rating	
31	56,000 ohm carbon	10\%	$\frac{1}{2} \mathrm{~W}$	R5632
32	10,000 ohm carbon	10\%	$\frac{1}{2} \mathrm{~W}$	R1032
33	2,200 ohm carbon	10\%	$\frac{1}{2}$ W	R2222
34	1,000 ohm carbon	10\%	$\frac{1}{2}$ W	R1022
35	330 ohm carbon	10\%	$\frac{1}{2} W$	R3312
36	3,300 ohm carbon	10\%	$\frac{1}{2} W$	R3322
37	2,200 ohm carbon	10\%	$\frac{1}{2}$ W	R2222
38	18,000 ohm carbon	10\%	$\frac{1}{2} \pi$	R1832
39	560 ohm carbon	10\%	$\frac{1}{2} W$	R5612

Circuit
No.

Resistors
Tol \pm
Rating
Part Number

MISCELLANEOUS

60
Aerial loading coil
PT942
61
62
63
64
65
66
67
Rod aerial coil
L578
Oscillator coil
L532
No. 1 I.F. transformer
L574
No. 2 I.F. transformer
L643
No. 3 I.F. transformer
L576
Driver transformer - 5000 to 2500 ct . ohms imped. T283
Speaker transformer - 400 ct . to 15 ohms impedance T2yl
Speaker - $3^{\prime \prime}$ permag. type 3C, cone 15 ohms imped. K250
ON/OFF switch - part of volume control circuit No. 44
Plug - 2 pin, battery connection
482/30C
Transistor-mixer/oscillator, tyce 2N412
Diode - A.G.C., type 1N295
Transistor - I.F. amp. No.l, type 2 N 410
1N295
Transistor - I.F. amp., No.2, type 2 N410
Diode - detector/A.G.C., type IN295
1N295
Transistor - audio amp., type $2 N 406$
Transistor - audio driver type $2 \mathbb{1} 406$
Transistor - audio output, type 2N408
M470

4128-011-02
4128-010-02
4128-010-02
4128-009-02
4128-009-02
4128-008-03
4128-008-03

Terminal clip (2) speaker lead
7244-001-01
Mount pillar (2) rod aerial
808/81
Loeking clip (2) mount pillar
Nut plate (2) mount pillar, $\frac{1}{8}$ " Whit.
453/250
Spacer (7) transistor mount
11/685-3

Battery clip
7055-004-01
Ficrew (2) $\frac{1}{4}$ " x No. 8 bdr. hd. self-teppine, battery slip
40/560-48
wasner (2) battery clip
1/30C-5
476/250-4
Speednut (2) cabinet handle screws No. 4 captive
627/250-1
476/250-26
Speednut (3) cabinet rear flap fastening
Screw (6) $\frac{3}{\beta}$ " x No. 6 Phillips pan. hd. circuit board mt.
Screw. (3) $\frac{3}{8}$ " x No. 4 BA . rd. hd. gang cond. mt.
Bush (3) cond. garg. mount
Grommet (3) cond. gang mount
Nut - volume control
Washer - 7/64" shakeproof - vol . cont.
Bush - tuning spindle
Grub screw (2) $3 / 16^{\prime \prime} \times 5 / 32^{\prime \prime}$ Whit.
Dial background
Tuning dial knob assy. - gold trim
Centre insert - gold trim
Dial reading
Volume control knob
Clip - vol. cont. knob
Washer - centre tuning knob location
Screw (3) $\frac{1}{4}$ " x 3/32', Whit.csk.iue - centre tuning knob
78/560-14
66/560-1
7031-037-01
5/91-1
542/250
1/562-2
52/849-1
30/560-3
90/349
A114/849-1
7119-002-02
7070-009-01
7124-030-02
22/755
30/755
Screw (2) $\frac{3^{\prime \prime}}{4 \prime} \times \frac{1}{8} "$ Whit. rd. hd. - mount pillar
Screw (2) $\frac{1}{2} " \mathrm{x}$ No. 4 Phillips hd. - carry handle mount
Handle mount plate
Handle mount loop (2)
7198-125-0\%
7198-176-33
97/560-5
7169-030-01
Mount plate (2) handleloops
62/849
Cover (2) mount plate
Screw (3) rear flap of cabinet - 4BA plated
63/849

Spring clip (3) rear flap screw fastening
65/849
256/415

Escutcheon grille assy. front of leather case
700/250-2 consists of:-
Escutcheon
7099-002-01

Grille
7099-001-01 Gaske t

48/849-2
49/849

STYLING

Leather case assy. - does not include carry handle or esoutcheon grille assy.

Colour
Grey
Red
Blue
American Tan
Black Texon
Part No.
7040-018-01
7040-018-02
7040-018-03
70: J-018-04
7040-0]5:-05
HANDLE
Grey
7109-006-01
Red
Blue
American Tan
Black Texon

7109-006-02
7109-006-03
7109-006-04
7109-006-05

