

DESIGN
The Ferris Model 234 portable car radio is an efficient transistor portable with preferred size, weight and battery. In addition it is a compact dash-mounted car radio giving excellent, ignition noise free reception. This is achieved by the use of the Ferris "Shielded Chassis" technique and separate high gain aerial coil for connection to a car radio aerial. The Ferris 12V car battery adaptor M234 BA permits connection to the car battery.

A protective diode in the car battery adaptor prevents current flowing in the unit if connected in the wrong polarity. Thus neither adaptor nor set can be damaged. Adequate filtration ensures suppression of interference which could otherwise enter the set.

SPECIFICATIONS

Band coverage - $525-1760 \mathrm{kc} / \mathrm{s}$.
Intermediate frequency - $455 \mathrm{kc} / \mathrm{s}$.
Speaker - $23_{\frac{3}{4}}$ round, 15Ω voice coil.
Power outpuł - undistorted, 330 mW ; maximum, 420 mW .
Current drain - 10 mA at 9 V .
Battery - Eveready Type ER2364
Transistors - 2N1639 converter; 2N1638 1st IF amplifier; 2N1638 2nd IF amplifier; AC172 audio amplifier; AC125 audio driver; AC127 AC128 power output complementary pair.
Diodes - OA90 detector and AVC; OA90 signal overload.

Mingay's
 ELECTRICAL
 WEEKLY
 Tecdata
 Series No. 8

Do not operate set without speaker connected.

FIG.I.

FIG. 2.

BATTERY REPLACEMENT

Remove back by releasing the single holding screw. After fitting a new battery ensure an even fit of the moulded back before tightening the holding screw.
To gain access to receiver components, remove moulded back as previously described. Refer to Fig. 1 - remove screws marked "B", then with the aid of a screwdriver engage the slot "C" and lever off the rear metal lid. Note that the complete circuit alignment can be carried out when these lids have been removed.

REMOVING "SHIELDED CHASSIS" FROM CASE

1. Remove handspan wheel.
2. Remove volume control knob (knob pulls off).
3. Remove case back and rear metal lid.
4. Remove three screws marked "D" in Fig. 2.
5. Shielded chassis can now be swung clear of moulded case. 6. Lever off front metal lid. Both sides of the printed circuit board are now accessible, thus permitting replacement of any major component.

DC RESISTANCE OF WINDINGS	in ohms	
Aerial filter choke (L1)		5
Aerial coil primary		(L.2)
Aerial coil secondary (L3)		25
Ferrite rod aerial (L3)		7
Oscillator coil primary		1
Oscillator coil secondary total	$\}$	(L4)
IF1 primary		0.25
IF1 secondary	2	
IF2 primary total		2
IF2 secondary		0.3
IF3 primary total	2	
IF3 secondary		0.3
		2
		1

ALIGNMENT PROCEDURE

For all alignment operations, connect the ground side of the signal generator to the metal shield and keep the generator output as low as possible to avoid AVC action. Set volume control at maximum. NB. Use the correct alignment tool for making adjustments. Cores are easily broken by improper handling, thus making replacement of entire coil or transformer necessary. Set aerial switch to "C".
Note: When aligning the rod aerial as described, the output from the signal generator will need to be in the order of $0.3-1 \mathrm{mV}$, as it is only loosely coupled to the set via the capacity of the aerial switch.

Step	Connect sig. generator to	Tune sig. generator to	Tune receiver to	Adjust for max. output
1. 2. 3.	Base of 2N1639 converter via $0.1 \mu \mathrm{~F}$ capacitor	$455 \mathrm{kc} / \mathrm{s}$	Gang fully open	IF3 Peak cores IF2 toward top IF1 of can
4.	Repeat above adjustments until no further increase can be obtained.			
5. 6.	Aerial socket via standard dummy aerial	$\begin{gathered} 525 \mathrm{kc} / \mathrm{s} \\ 1760 \mathrm{kc} / \mathrm{s} \end{gathered}$	Gang fully closed Gang fully open	Osc. coil core L4 Osc. trimmer TR3
7.	Repeat steps 5 and 6 until band limils are $525-1760 \mathrm{kc} / \mathrm{s}$.			
8. 9.	Aerial socket via standard dummy aerial	$\begin{gathered} 600 \mathrm{kc} / \mathrm{s} \\ 1500 \mathrm{kc} / \mathrm{s} \end{gathered}$	$\begin{gathered} 600 \mathrm{kc} / \mathrm{s} \\ 1500 \mathrm{kc} / \mathrm{s} \end{gathered}$	Aerial coil core L2 Aerial trimmer TR2
Repeat steps 8 and 9 until no further increase can be obtained. Check sensitivity at 1500,1000 and $600 \mathrm{kc} / \mathrm{s}$ for satisfactory performance.				
Ferrite rod alignment: Set aerial switch to "P". 1. Aerial socket via dummy $1500 \mathrm{kc} / \mathrm{s}$$\quad 1500 \mathrm{kc} / \mathrm{s} \quad$ Rod aerial trimmer TR1				
Repeat steps 1 and 2 until no further increase can be obtained.				

COMPONENT LIST

Resistors (all $\frac{1}{2}$ watt)		
R1	15k	10\%
${ }_{8}^{8} 8$		10\%
R4	-	10\%
${ }^{R 6}$	${ }^{\text {chen }}$	10\%
${ }_{88} 8$	${ }_{\substack{820 \Omega \\ 1 k}}$	10\%
-	${ }_{27} 12$	10\%
11	${ }_{10}^{1.85}$	10\%
12	10 k	10\%
${ }_{\text {R14 }}$	${ }_{\substack{3300 \\ 38}}$	10\%
815	${ }_{16} 1$.	10\%
		Pot.
18	${ }_{22 \mathrm{k}}$	10\%
819	1 kk	10\%
${ }_{R 21}{ }^{\text {R20 }}$	4.78 3308	10\%
R22 R23 18	${ }_{\substack{1 \mathrm{k} \\ 180 \\ 680}}$	10\%
${ }^{R 23}$	680 130	NTC
${ }_{\text {R26 }}^{\text {R25 }}$	${ }_{6880}^{568}$	10\%
R27	3.38	10\%
R28	3.38	10\%
Capacitors		
${ }^{\text {c }}$	${ }_{7.5}^{100} \mathrm{pF}$	
C6 ${ }_{\text {C6 }}$		
c10C11		
CCH^{13}		
C19C20		
EC2 EC3 EC4 EC6 EC8		EAL
	${ }_{3}^{3.2} \mu \mathrm{~F}$	6_{6}^{69}
	$200 \mu \mathrm{~F}$	6 V
	$100 \mu \mathrm{~F}$	10 V
	$320 \mu \mathrm{~F}$	${ }_{6}{ }^{4}$

Transistors and Diodes

Chokes and Coils

$\begin{array}{ll}\text { L1 Aerial choke Type } 8326 \\ \text { L2 } & \text { Aerial coil Type } 7120 \\ \text { L3 } & \text { Rod aerial coil Type } 7122\end{array}$ Rod aerial coil Type 712

IF Transformers

$\begin{array}{llll}\text { IF1 } & 455 & \mathrm{kc} / \mathrm{s} & \text { Type } 9133 \\ \text { IF2 } & 455 & \mathrm{kc} / \mathrm{s} & \text { Type }\end{array}$ $455 \mathrm{kc} / \mathrm{s}$ Type 913

Trimmers

TR1, TR2, TR3 - trimmers mounted on gang

Switches

S1A, S1B. S1C - three-pole,
two-position slide switch
S2 - single-pole, single-throw S2 - single-pole, single-throw
switch on volume control switch on volume control
Battery $\quad 9 \mathrm{~V}$ Type 2364
Band coverage $525-1760 \mathrm{kc} / \mathrm{s}$ $1 F$ frequency $455 \mathrm{kc} / \mathrm{s}$

Total battery current 10 mA for 9V battery.

Collector current of output stage for zero signal, 2 mA .
All resistors $\frac{1}{2} W$ unless otherwise stated.
Note: All voltages checked with 40,000 ohms per volt meter at zero signal input.

