SERVICE MANUAL Ferris Model 234 Cadet 7 TRANSISTOR PORTABLE CAR RADIO

DESIGN

The Ferris Model 234 portable car radio is an efficient transistor portable with preferred size, weight and battery. In addition it is a compact dash-mounted car radio giving excellent, ignition noise free reception. This is achieved by the use of the Ferris "Shielded Chassis" technique and separate high gain aerial coil for connection to a car radio aerial. The Ferris 12V car battery adaptor M234 BA permits connection to the car battery.

A protective diode in the car battery adaptor prevents current flowing in the unit if connected in the wrong polarity. Thus neither adaptor nor set can be damaged. Adequate filtration ensures suppression of interference which could otherwise enter the set.

SPECIFICA TIONS

Band coverage — 525-1760 kc/s.
Intermediate frequency — 455 kc/s.
Speaker — 2¾" round, 15 Ω voice coil.
Power output — undistorted, 330 mW; maximum, 420 mW.
Current drain — 10 mA at 9V.
Battery — Eveready Type ER2364.
Transistors — 2N1639 converter; 2N1638 1st IF amplifier; 2N1638
2nd IF amplifier; AC172 audio amplifier; AC125 audio driver;
AC127 AC128 power output complementary pair.
Diodes — OA90 detector and AVC; OA90 signal overload.

SERVICE MANUAL CADET PORTABLE CAR RADIO MODEL 234

Do not operate set without speaker connected.

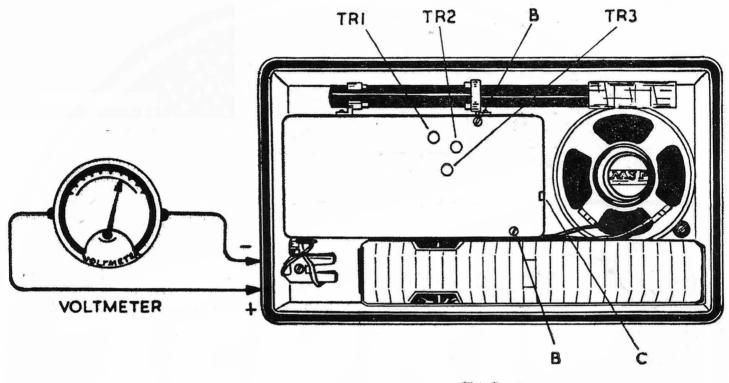
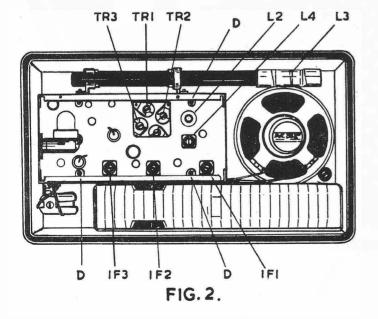
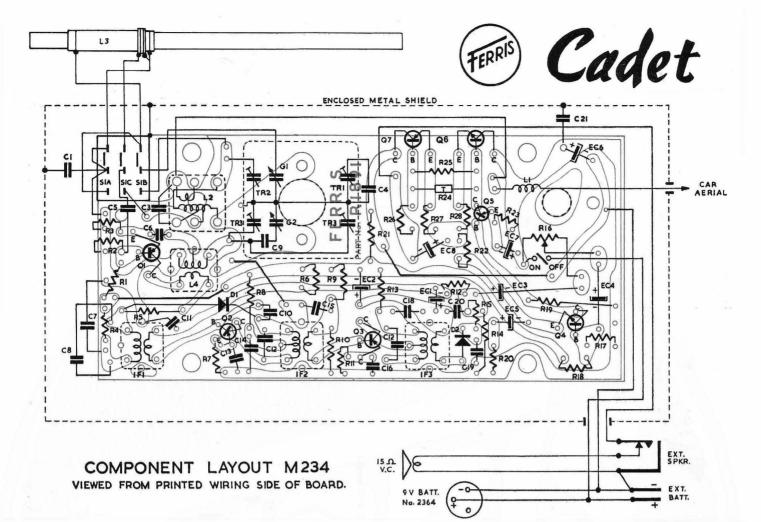



FIG.I.

BATTERY REPLACEMENT

Remove back by releasing the single holding screw. After fitting a new battery ensure an even fit of the moulded back before tightening the holding screw.

To gain access to receiver components, remove moulded back as previously described. Refer to Fig. 1 — remove screws marked "B", then with the aid of a screwdriver engage the slot "C" "B", then with the aid of a screwdriver engage the slot "C" and lever off the rear metal lid. Note that the complete circuit alignment can be carried out when these lids have been removed.


REMOVING "SHIELDED CHASSIS" FROM CASE

- 1. Remove handspan wheel.
- 2. Remove volume control knob (knob pulls off).
- Remove case back and rear metal lid.
 Remove three screws marked "D" in Fig. 2.

5. Shielded chassis can now be swung clear of moulded case. 6. Lever off front metal lid. Both sides of the printed circuit board are now accessible, thus permitting replacement of any major component.

DC RESISTANCE OF WINDINGS in ohms

Aerial filter choke (L1)	5
Aerial coil primary } (L.2)	25
Aerial coil secondary	7
Ferrite rod aerial (L3)	1
Oscillator coil primary (L4)	0.25
Oscillator coil secondary total	2
IF1 primary	2
IF1 secondary	0.3
IF2 primary total	2
IF2 secondary	0.3
IF3 primary total	2
IF3 secondary	1

ALIGNMENT
PROCEDURE

For all alignment operations, connect the ground side of the signal generator to the metal shield and keep the generator output as low as possible to avoid AVC action. Set volume control at maximum.

NB. Use the correct alignment tool for making adjustments. Cores are easily broken by improper handling, thus making replacement of entire coil or transformer necessary. Set aerial switch to "C".

Note: When aligning the rod aerial as described, the output from the signal generator will need to be in the order of 0.3-1 mV, as it is only loosely coupled to the set via the capacity of the aerial switch.

Step	Connect sig. generator to	Tune sig. generator to	Tune receiver to	Adjust for max. output
1.	Base of 2N1639		Gang fully	IF3 Peak cores
2.	converter via	455 kc/s	open	IF2 toward top
3.	$0.1 \mu F$ capacitor			IF1 of can
4.	Repeat above adjus	tments until no f	urther increase c	an be obtained.
5.	Aerial socket via standard	525 kc/s	Gang fully closed	Osc. coil core L4
6.	dummy aerial	1760 kc/s	Gang fully open	Osc. trimmer TR3
7.	Repeat steps 5 and	6 until band limi	us are 525-1760 k	c/s.
8.	Aerial socket via standard	600 kc/s	600 kc/s	Aerial coil core L2
9.	dummy aerial	1500 kc/s	1500 kc/s	Aerial trimmer TR2
	steps 8 and 9 until n 000 and 600 kc/s for			l. Check sensitivity at
Ferrite	rod alignment: Set a	erial switch to "H	»».	F
1.	Aerial socket via dummy	1500 kc/s	1500 kc/s	Rod aerial trimmer TR
2.	aerial. See note.	600 kc/s	600 kc/s	Slide winding L3 along ferrite rod

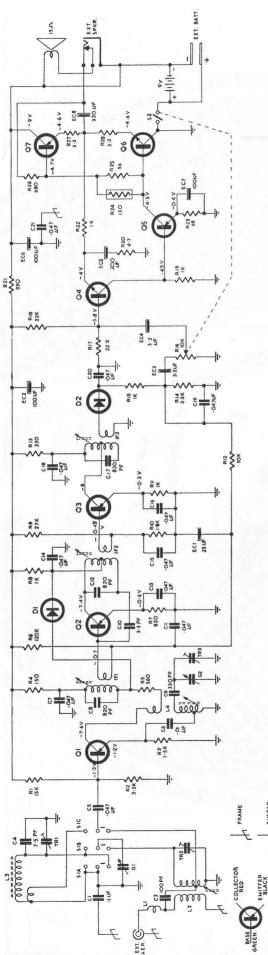
Repeat steps 1 and 2 until no further increase can be obtained.

•

1

(A DIVISION OF FERRIS INDUSTRIES LIMITED) SPECIALISTS IN CAR RADIO ENGINEERING SINCE 1934

.5


5

-

2

CADET PORTABLE CAR RADIO MODEL 234

Resistors R1 R2 R3 R4 R5 R6 R7 R7 R7 R7 R11 R112 R13 R112 R13 R14 R15 R17 R18 R17 R18 R17 R18 R17 R20 R21 R23 R24 R25 R25 R27 R28	(all ½ ψ 15k 3.3k 150Ω 560Ω 120h 820Ω 1k 27h 1.8k 1k 27h 1.8k 1k 22k 22k 1k 22k 330Ω 330Ω 330Ω 330Ω 180Ω 56Ω 68Ω 68Ω 68Ω 68Ω 3.3Ω	att) 10% 10% 10% 10% 10% 10% 10% 10%
Capacitor		
C1 C2 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C15 C15 C15 C15 C15 C15 C15 C15 C15	0.1 µF 100 pF 7.5 pF 0.01 µF 0.047 µF 2.00 pF 3.3 pF 0.047 µF 0.047 µF 0.047 µF 0.047 µF 0.047 µF 0.047 µF 0.047 µF 0.047 µF 0.047 µF 0.047 µF 820 pF 0.047 µF 8.00 r 8.20 pF 3.3 pF 3.4 r 3.4 r 3.5 pF 3.4 r 3.5 r 3.5 pF 3.4 r 3.5 r 5.5 r 3.5 r 5.5 r	25V 125V* 500V 25V 25V 125V* 125V* 125V* 25V 25V 25V 25V 25V 25V 25V 25V 25V 25V
Electros EC1 EC2 EC3 EC4 EC5 EC6 EC6 EC7 EC8	* STY 25 μF 100 μF 3.2 μF 3.2 μF 200 μF 100 μF 100 μF 320 μF	6V 6V 6V 6V 6V 6V 6V 6V 6V 6V
Transisto	rs and Di	iodes

Q1	2N1639, 2N374	AF116
Q2	2N1638, 2N373	AF117
Q3	2N1638, 2N373	AF117
Q4	AC172, 2N649	
Q5	AC125, 2N406	
Q6	AC127, 2N649	
Q7	AC128, 2N408	
D1	OA90, 1N60A	
D2	OA90, 1N60A	

Chokes and Coils

L1	Aerial	choke	Type	8326
L2	Aerial Rod ae	coil I	ype 7	120
L3	Rod as	rial coi	1 Type	7122
L4	Osc. co	oil Type	7325	

IF Transformers

IF1	455	kc/s	Type	9133
IF2	455	kc/s	Type	9133
IF3	455	kc/s	Type	9134

Trimmers

TR1, TR2, TR3 — trimmers mounted on gang

Switches

BUSBAR

+

SIA, S1B, S1C — three-pole, two-position slide switch S2 — single-pole, single-throw switch on volume control Battery 9V Type 2364 Band coverage 525-1760 kc/s IF frequency 455 kc/s

Total battery current 10 mA for 9V battery. Collector current of output stage for zero signal, 2 mA. All resistors $\frac{1}{2}W$ unless otherwise stated.

Note: All voltages checked with 40,000 ohms per volt meter at zero signal input.