"His Master's Voice" SERVICE MANUAL for # FIVE-VALVE A.C. MAINS-OPERATED MEDIUM-WAVE AND BANDSPREAD SHORT-WAVE CHASSIS **TYPE 42** THE GRAMOPHONE COMPANY LIMITED (Incorporated in England) HOMEBUSH - - - N.S.W. #### **TECHNICAL SPECIFICATION** #### POWER SUPPLY: 200 to 250 volts at 40 to 50 c.p.s. CONSUMPTION: 42 watts. #### TUNING RANGE: S.W.1: 18.40 — 14.20 Mc/s. (16.30 - 21.13 metres). S.W.2: 12.10 — 9.40 Mc/s. (24.79 - 31.92 metres). S.W.3: 7.50 - 5.90 Mc/s. (40.00 - 50.85 metres). M.W.: 1600 - 540 Kc/s. ### INTERMEDIATE FREQUENCY: 457.5 Kc/s. #### VALVE COMPLEMENT: 6AN7 Frequency Changer 6N8 I.F. Amp.-Demod.-A.V.C. 6N8 A.F. Amp. 6M5 Power 6V4 Rectifier. #### DIAL AND PILOT LAMPS: 6.3 volt, 0.3 amp. (Miniature screw-cap base). #### LOUDSPEAKER: 6 x 9-inch Permagnetic. Voice coil impedance, 4 ohms at 400 c.p.s. #### TONE CONTROL: Four Positions- - (1) Bass and Treble Cut. - (2) Normal. - (3) Treble Cut. - (4) Treble Cut. #### **CIRCUIT DESCRIPTION** This model incorporates a 5-valve A.C. mains-operated medium-wave and bandspread short-wave superheterodyne receiver. #### FREQUENCY CHANGER A triode-hexode, V1, is employed as the frequency changer. On the medium-wave band the aerial is coupled through a high-gain transformer, L2-L3, to the hexode grid. An acceptor circuit, tuned to the intermediate frequency, is connected across the aerial and earth terminals. The triode section of V1 on the medium-wave band is used as a shunt fed plate tuned oscillator; tracking is obtained by means of a fixed padding capacitor in conjunction with an adjustable iron-dust tuning bolt in oscillator coil L7-L8. With the wave-change switch set to "Gram." position, the hexode signal grid is grounded to chassis, at R.F. potentials, through capacitor C4. On the short-wave bands, a transformer, L4-L5, having a tapped secondary, is used to couple the aerial to the frequency changer grid. The signal frequency section of the variable ganged capacitor, VC1, is padded on all short-wave bands by means of capacitors C5, C6 and C7 to obtain bandspread tuning. Circuit trimming adjustments are carried out by means of the iron-dust tuning bolt in L4-L5 and trimmer capacitor TC2. The short-wave oscillator employs a tapped coil, L6, in a Colpitt's arrangement; bandspread tuning is obtained on all short-wave bands by the use of padding capacitors C12, C13 and C14, in conjunction with the oscillator section VC2, of the variable ganged capacitor. Circuit trimming adjustments are made by means of the iron-dust tuning bolt in L6 and trimmer capacity TC4. The oscillator circuit tracks on the high frequency side of the signal frequency. #### I.F. AMPLIFIER-DEMOD.-A.V.C. The frequency changer is transformer-coupled to a duo-diode-pentode valve, V2, the output of which is coupled by means of a second transformer to the demodulator diode, where the signal is demodulated and appears across resistor R8 The I.F. transformers employed have fixed tuning capacitors and are permeability tuned. Neutralisation of this stage is effected by capacitor C20. The plate circuit of this amplifier is capacity-coupled to the remaining diode to provide A.V.C. Full A.V.C. voltage is applied to the frequency changer and I.F. amplifier; standing bias for these stages and A.V.C. diode delay voltage is supplied from the back-bias resistor R14 in the high tension negative circuit. #### A.F. AMPLIFIER The demodulated signal, or pick-up output, is coupled to the volume control in the grid circuit of this pentode amplifier, V3, through the tone control circuits, which comprise series and/or shunt connected capacitors. #### POWER AMPLIFIER The output of the preceding stage is resistance - capacitance coupled to the pentode power valve, V4, which is, in turn, coupled to the speaker through a step-down transformer. Voltage developed across the secondary of this transformer is injected back into the screen grid circuit of the A.F. amplifier to provide inverse feedback. #### HIGH TENSION SUPPLY The power supply employs an indirectly- heated full-wave rectifier, V5. Unfiltered high tension voltage from the cathode of the rectifier supplies the plate circuit of the power amplifier; the remaining high tension circuits of the receiver are fed through a resistance-capacitance filter. Voltage drop across back-bias resistors R14 and R15 in the high tension negative circuit supplies grid bias voltage to the power amplifier. A double-pole mains switch incorporated with the volume control is used to control the mains supply to the receiver and mains outlet socket. #### RECEIVER ALIGNMENT PROCEDURE In any case where a component replacement has been made in either the tuned I.F. or R.F. circuits of a receiver, all circuits must be realigned. I.F. alignment should always precede R.F. alignment, and even if only one coil has been serviced, the whole of the realignment should be done in the order given. An output meter should always be connected across the voice coil terminals of the speaker to indicate when the circuits are tuned to resonance. In carrying out the following operations, it is important that the input to the receiver from the signal generator should be kept low and progressively reduced as the circuits are brought into line, so that the output meter reading does not exceed about 1 volt. #### I.F. ALIGNMENT Set receiver controls as follows: Volume Control: Maximum. Tone Control: Normal. Wave-Change: Medium-Wave. Tuning Control: Capacitor plates fully enmeshed. - (1) Connect the output of the signal generator through a 0.1 mF. capacitor to the stator plates of the front section of the ganged capacitor. - (2) Tune the signal generator to exactly 457.5 kc/s. - (3) Adjust the I.F. transformer trimmer screws for maximum reading on the output meter, commencing with the second I.F. transformer and following with the first. (4) Continue this alignment on each transformer in turn until no greater output can be obtained. It is necessary to repeat this procedure twice to ensure correct alignment. Note: If the trimmer screws are screwed too far in, it may be possible to obtain a false peak due to coupling effects between the iron cores. Start alignment of each individual transformer by first screwing its core well out, and then advancing the core into the coil until resonance is obtained. #### R.F. ALIGNMENT (Medium-Wave) - (1) With the controls set as for I.F. alignment, connect the signal generator output leads in series with a 200 pF. capacitor to the aerial and earth terminals of the receiver. - (2) Check that, when the ganged capacitor is fully closed, the pointer coincides with the setting marks at the extreme left-hand side of the dial scale. - (3) Tune the signal generator and receiver to 600 kc/s. (The 600 kc/s calibration mark will be found above 7ZL on the dial scale). - (4) Whilst "rocking" the tuning control, adjust the medium-wave oscillator tuning bolt for maximum response. - (5) Tune the signal generator to 1500 kc/s. - (6) Adjust the tuning control until the pointer coincides with the 1500 kc/s calibration mark (near 7DY). - (7) Adjust the oscillator and aerial trimmer capacitors in that order for maximum response. - (8) Repeat operation (3) to (7) inclusive until correct alignment is obtained. #### R.F. ALIGNMENT (Short-Wave) - (1) Set the wave-change switch to S.W.2. Replace the 200 pF. capacitor between the signal generator and receiver with a 400 ohm non-inductive resistor. - (2) Tune the signal generator to 10 Mc/s. - (3) Adjust receiver tuning control so that the pointer coincides with 10 Mc/s calibration. - (4) Adjust S.W. oscillator and aerial tuning bolts in that order for maximum output. - (5) Tune the signal generator to 12 Mc/s. - (6) Adjust tuning control so that the pointer coincides with 12 Mc/s calibration - (7) Adjust S.W. oscillator and aerial trimmer capacitors in that order for maximum output. - (8) Repeat operations (2) to (7) inclusive, until correct calibration is achieved at both 10 Mc/s and 12 Mc/s points. - (9) Switch the wave-change switch to S.W.1. - (10) Tune signal generator and receiver to 15 Mc/s. - (11) Adjust the inductance of the S.W. aerial circuit for resonance. In this operation, the tuning bolt in the coil should not be touched. The adjustment is made by altering the position of the wire connected to the first tap (nearest the coil base) of the S.W. aerial coil. A convenient method of doing this is to take a ¼in. diameter plastic rod and file a small slot across one end; engage the wire in the slotted rod, and alter its position relative to the coil winding; a position will be found where resonance is obtained as indicated by maximum deflection on the output meter. This completes the short-wave alignment for all bands. #### **CAUTION** When refitting the chassis into the cabinet, care should be taken not to disturb the wiring of the short-wave circuits; otherwise, they will be thrown out of alignment. #### ADDITIONAL DATA Any further service information may be obtained by addressing an enquiry to "The Service Division, E.M.I. (Aust.) Pty. Limited, 575-577 Parramatta Rd., Leichhardt (telephone LM1491). During the course of production of this radiogram, the Company reserves the right, without notice, to make any modifications or improvements in design which may be necessary to meet prevailing conditions. # PARTS LIST # RESISTORS | REF. | PART No. | DESCRIPTION | REF. | PART No. | DESCRIPTION | |---|--|---|--|--|---| | R1
R2
R3
R4
R5
R6
R7
R8
R9
R10 | 7400142
7400232
7420052
7400122
7420062
7400232
7400202
7420142
7400192
7400112 | 100,000 ohms \pm 10% $\frac{1}{2}$ watt 39,000 ohms \pm 10% $\frac{1}{2}$ watt 22,000 ohms \pm 10% $\frac{1}{2}$ watt 47,000 ohms \pm 10% $\frac{1}{2}$ watt 27,000 ohms \pm 10% $\frac{1}{2}$ watt 39,000 ohms \pm 10% $\frac{1}{2}$ watt 2.2 megohms \pm 10% $\frac{1}{2}$ watt 2.70,000 ohms \pm 10% $\frac{1}{2}$ watt 1 megohm \pm 10% $\frac{1}{2}$ watt 270,000 ohms \pm 10% $\frac{1}{2}$ watt 27,000 ohms \pm 10% $\frac{1}{2}$ watt | R11
R12
R13
R14
R15
R16
R17
R18
R19
R20 | 7420252
7420252
7420252
7460022
7460022
7400022
7420182
7420132
7400112
7400182 | 10,000 ohms \pm 10% 1 watt 10,000 ohms \pm 10% 1 watt 10,000 ohms \pm 10% 1 watt 39 ohms \pm 10% $\frac{1}{2}$ watt 39 ohms \pm 10% $\frac{1}{2}$ watt 1,000 ohms \pm 10% $\frac{1}{2}$ watt 680,000 ohms \pm 10% 1 watt 220,000 ohms \pm 10% 1 watt 27,000 ohms \pm 10% 1 watt 470,000 ohms \pm 10% $\frac{1}{2}$ watt | # CAPACITORS | REF. | PART No. | DESCRIPTION | REF. | PART No. | DESCRIPTION | |--|--|---|--|--|---| | C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17 | 2750041
2730051
2730001
2790121
2730271
2730281
2730261
2790131
2730041
2730091
2730091
2730271
2730271
2730261
2790161
2750041 | 100 pF \pm 5%
100 pF. \pm 10%
3 pF. \pm 1 pF.
.05 mF. \pm 20% 200V. wkg.
250 pF. \pm 1%
300 pF. \pm 1%
70 pF. \pm 5%
.05 mF. \pm 20% 400V. wkg.
50 pF. \pm 10%
400 pF. \pm 1%
250 pF. \pm 1%
250 pF. \pm 1%
250 pF. \pm 1%
20 pF. \pm 5%
0.1 mF. \pm 20% 400V. wkg.
100 pF. \pm 5%
100 pF. \pm 5%
100 pF. 5% | C18
C19
C20
C21
C22
C23
C24
C25
C26
C27
C28
C29
C30
C31
C32
C33 | 2790101
2790131
2730011
2730071
2730041
2750041
2750041
2750111
2730131
2790071
2730161
2730231
2690111
2690211
2790131
2790161 | .02 mF. \pm 20% 600V. wkg.
.05 mF. \pm 20% 400V. wkg.
10 pF. \pm 10%
200 pF. \pm 10%
100 pF. \pm 5%
100 pF. \pm 5%
24 mF. \pm 350 P.V.
500 pF. \pm 10%
.01 mF \pm 20% 600V. wkg.
.015 mF. \pm 10%
.024 mF. 350 P.V.
8 mF. 350 P.V.
8 mF. 350 P.V.
105 mF. \pm 20% 400V. wkg.
105 mF. \pm 20% 400V. wkg. | ## MISCELLANEOUS | REF. | PART No. | DESCRIPTION | REF. | PART No. | DESCRIPTION | | |-------------------|----------|---------------------------|------|----------|-------------------------------|--| | L2-L3 | 2530101 | Coil M/W Aerial | S4 | 8550013 | Switch Tone Control | | | L4-L5 | 2530112 | Coil S/W Aerial | V1 | 9320151 | Valve 6AN7 | | | L6 | 2570092 | Coil S/W Oscillator | V2- | | | | | L7-L8 | 2570084 | Coil M/W Oscillator | V3 | 9320201 | Valve 6N8 | | | L1 | 2590002 | Coil I.F. Filter | V4 | 9320291 | Valve 6M5 | | | VC1- | | | V5 | 9320351 | Valve 6V4 | | | VC2 | 2810021 | Capacitor 2-Gang Variable | | 9320391 | Lamp, 6.3 volt, 0.3 amp. | | | TC1- | | • | | 7940322 | Scale Dial Glass | | | TC2 | 2810051 | Capacitor Trimmer | | 2970011 | Cord Dial Drive (5'6" length) | | | TC3- | | | | 3810072 | Drum-Dial | | | TC4 | 2810051 | Capacitor Trimmer | | 6710262 | Pointer-Dial | | | IFT1 | 9060024 | Transformer—1st I.F. | 1 | 8400191 | Spring (Drum to Pointer) | | | IFT2 | 9060024 | Transformer—2nd I.F. | | 8400261 | Spring (Drive Spindle to | | | T1 | 9040004 | Transformer Power | | | Drum) | | | T2 | 9050011 | Transformer Output | | 8370034 | Drive Spindle | | | VR1 | 6770012 | Volume Control, ½ megohm | | 4530141 | Grille | | | | | with Switch | | 8310232 | Speaker, 6-9 Ellipsoidal. | | | S1a | | | | | | | | S1B | | | | | | | | $\widetilde{S2A}$ | 8550003 | Switch Wave-Change | | | | | | S2B | 000000 | | | | | | | S3 | | | | | | | # VOLTAGE TABLE - VOLTAGES AND CURRENTS ARE WITH THE RECEIVER OPERATING ON AVERAGE MAINS VOLTAGE AND TUNED TO A POINT OF NO RECEPTION ON THE MEDIUM WAVE BAND. - VOLTAGE READINGS TAKEN WITH METER RESISTANCE OF 1,000 OHMS PER VOLT. - VOLTAGE AND CURRENT READINGS WITHIN + 15 %. - RESISTANCE READINGS ARE APPROXIMATE. | VOLTS
TO
CHASSIS | CURRENT
m.A. | RESISTANCE
TO
CHASSIS | VALVE
ELECTRODE | BOTTOM VIEW
OF
VALVE SOCKET | VALVE
ELECTRODE | VOLTS
TO
CHASSIS | CURRENT
mA. | RESISTANCE
TO
CHASSIS | |------------------------------------|-----------------|-----------------------------|--------------------|-----------------------------------|--------------------|------------------------|----------------|-----------------------------| | V 1 | | | | 6AN7 | FREQUENCY CHANGER | | | | | | | 0 | HEATER | | HEATER | 6-3 A.C. | 230 A.C. | | | 0 | 9.1 | 0 | CATHODE | | INTERNAL CON. | | | | | | | 3·1 M L | GRID | | PLATE | 178 | 3.2 | 50 K A | | 72 | 2.5 | 30 K A | SCREEN GRID | ├ | OSC.PLATE | 85 | 3.4 | 75 K.A. | | | | | | | OSC. GRID | | | 50KA | | V2 6N8 I.F. AMPLIFIER-DEMODULATOR- | | | | | | | OR-AV.C. | | | | | 0 | HEATER | | HEATER | 6·3A.C. | 300 A.C. | | | 0 | 7-7 | 0 | CATHODE | - VOO | PLATE | 178 | 5 · 5 | 50 K N | | | | 3.0MU | GRID | | A.V.C.DIODE | | | 1 M L | | 90 | 2.2 | 30 K W | SCREEN GRID | | DEMOD.DIODE | | | 275KA | | | | | | | SUPP. GRID | | | 0 | | V3 | | | 6N8 | A.F.AMPLIFIER | | | | | | | | 0 | HEATER | | HEATER | 6·3A.C. | 300 A.C. | | | 0.75 | 0.8 | 1K 🕰 | CATHODE | | PLATE | 19 | 0.6 | 250KA | | | | 0 - 5 00KN | GRID | | DIODE | | | 0 | | 14 | 0.24 | 750 K A | SCREEN GRID | | DIODE | | | 0 | | | | | | | SUPP. GRID | 0.75 | | 1 K 🕰 | | V4 | | | | 6M5 | POWER AMPLIFIER | | | | | | | 0 | HEATER | | HEATER | 6•3A.C. | 710A.C. | | | 0 | 35⋅2 | 0 | CATHODE | | | | | | | | | 500K A | GRID | — ()— | PLATE | 238 | 31 | 54K A | | 178 | 4.2 | 50 K A | SCREENGRID | — (•) — | | | | | | | | | | | | | | | | V5 | | | 6 V 4 | RECTIFIER | | | | | | | | 0 | HEATER | | HEATER | 6-3 A.C. | 600 | | | 250 | 5 5 | 54 K.A. | CATHODE | ~\\\ | | | | | | | | | | | PLATE 2 | 257 A.C. | | 500 A | | 257 A.C. | | 470 A | PLATE 1 | ── ~ | | | | | | | | | | | | | | | #### REMARKS :- BIAS VOLTAGES: CONVERTER / I.F. AMP. ___ 2-2 VOLTS. POWER AMPLIFIER _____ 4-4 VOLTS. 6821122