A.W.A. RADIOLA TELEVISION RECEIVER CHASSIS 50-00 SERIES

ISSUED BY AMALGAMATED WIRELESS (AUSTRALASIA) LTD.

GENERALDESCRIPTION

The $50-00$ series chassis is an 18 -valve, vertically mounted, mains-operated, hand-wired, chassis using the easily serviced hinge-down construction. It features a 14 -channel neutrode tuner, a 3 -stage video I.F., ratio detector, stabilised horizontal and vertical scanning.

\author{

INTERMEDIATE FREQUENCIES

 Video I.F. Carrier Frequency
 $36.875 \mathrm{Mc} / \mathrm{s}$
 Sound I.F. Carrier Frequency $31.375 \mathrm{Mc} / \mathrm{s}$
 POWER CONSUMPTION170 watts maximum
 UNDISTORTED AUDIO POWER OUTPUT
 2 watts
 FOCUS
 Electrostatic (Low Voltage)
 DEFLECTION
 110° Magnetic
 TUNER TYPE
 TB Series
 (Refer Tuner Service Manual for Electrical Specifications and Alignment Procedure.)
}

ELECTRICALANDMECHANICALSPECIFICATIONS

VALVE AND DIODE COMPLEMENT

Revised Horizontal Linearity and Width Adjustment Adjust the horizontal linearity coil (L403) to give minimum voltage reading at the 6CM5 cathode test N.B. -From this position the linearity control may be set no more than two turns in either direction.
Set the width control (RV404) to give B boost voltage junction of C422 and C423, of 610 ± 20 volts. The width should not overscan more than $34^{\prime \prime}$ on either side with nominal 240 volts mains.
(1) WOTESERM voltage

(2)

.

Revised Horizontal Linearity and Width Adjustment Adjust the horizontal linearity coil (L403) to give minimum voltage reading at the 6CM5 cathode test N.B.-From this position the linearity control may be set no more than two turns in either direction. Set the width control (RV404) to give B boost voltage, at junction of C 422 and C 423 , of 610 ± 20 volts. The width should not overscan more than $\frac{3}{4}^{\prime \prime}$ on either side
with nominal 240 volts mains.

on voltomyst

FIELD TEST SHEET 50-00 SERIES
TB Series Neutrode Turret Tuner

*Refer tol abale on cabinet back

D.C. pesistance of winding

[^0]| | winoine | D.C. CBESISTA |
| :---: | :---: | :---: |
| 1406 | Horizontal Deffection | |
| ${ }_{6}^{4007}$ | H.T. Filiter Chote | |
| TR101 | Ratio Detector Primary | |
| TR102 | ${ }_{\text {Secondary }}^{\text {Speater Trasformer }}$ | |
| | Primery | |
| TR201 | Ist video I.F. | |
| | Precondary | |
| TR202 | ${ }_{\text {and }}^{\text {and video IF. }}$ Primare | |
| | Stemarem | |

*Less than 1 ohm. The abover readings were taten on a standard chassis, but substitu tion of materials during manufacture may causo variations and it should not

CHASSIS LAYOUT

top chassis view

circuit variations:
The following changes have been incorporated in this
Chasis since the releases of the initiol service information.

 To improve oCM5 valve life:

 The vertiofol circuit was changed to the configuration

To focilitate the horizontal linearity control adiustmen
for mint

${ }^{\text {To }}$ Provido easior odiustmont to top linearity:
The verticiel e circuitw was rearranged as shown in
hatest circuit diagram.

For revisisd horizontal linerity and width odijustment see underleof

Mitick

FIELD TEST SHEET 50-00 SERIES
TB Series Neutrode Turret Tuner

D.C. RESISTANCE OF WINDINGS

The above. readings were taken on a standard chassis, but substiution of materials during manufacture may cause variations and it should not
be assumed that a component is faulty if a slightly different reading is obtained.

COMPONENT REPLACEMENTS

PART or
CODE
4336

UNDER CHASSIS VIEW

50 SERIES CIRCUIT IMPROVEMENT
Under some conditions including incorrect width and horizontal linearity settings, it is possible for high EHT to be developed in the 50 series TV chassis. When high EHT is generated, greater than 18 KV (zero beam) premature failure of EHT rectifier valves may result. This failure will normally burn up R 427 lk ohm $1 / 2 \mathrm{w}$ resistor, which is in series with the EHT lead. In some cases in the field, because of wax being noted as having dropped from the EHT transformer, the transformer, as well as the EHT rectifier and the 1 k resistor, has been replaced. Our observations have shown that wax dripping from the EHT transformer, is not often an indication of transformer failure. Our tests on transformers replaced as defective for this reason indicate that the majority are in no way defective.

In current production of 50 series chassis, this problem has been overcome by addition of a 68 pf 4 Kv capacitor from cathode of $6 \mathrm{AU} 4-\mathrm{GTA}$ valve (pin 3) to junction of C 426 and C427 and by increasing R415 from 1 meg to 2.2 meg (grid resistor on 6CM5).

It is recommended that above alterations be carried out whenever earlier 50 series chassis are serviced in the field, in which the EHT at zero beam current is greater than 18 KV .

For the convenience of our clients, these parts are available in kit form, 1 only $1 \mathrm{k} 1 / 2 \mathrm{w}$ resistor for EHT socket -1 only $2.2 \mathrm{meg}^{1} / 2 \mathrm{w}$ resistor for 6 CM 5 grid leak -1 only 68 pf 4 Kv ceramic condenser. Part number for this kit is 47047 and the trade price is 55 cents plus 25% tax.

It is important that the horizontal linearity and width controls be correctly adjusted after carrying out these alterations. The correct adjustment of the horizontal linearity will be not more than 2 turns from minimum current through the line output valve. This current can be checked by measuring the voltage across a 1.5 ohm resistor inserted in the 6CM5 cathode circuit, or could be checked by inserting a 12 volt dial light in the 6CM5 plate circuit and adjusting for minimum globe brightness. The width control should be adjusted for 610 volts ± 20 volts which should correspond to about $3 / 4$ " overscan either side on 23 " or 25 " picture tube.

HIGH VOLTAGE WARNING

Operation of this receiver outside the cabinet involves a shock hazard from the receiver power supplies. Work on the receiver should not be attempted by anyone who is not thoroughly familiar with the precautions necessary when working on high voltage equipment. Do not operate the receiver with the high voltage compartment shield removed. Make sure that the earth strap between the chassis and the picture tube assembly is securely fastened before turning the receiver on.

PICTURE TUBE HANDLING PRECAUTIONS

Do not install, remove or handle the picture tube in any manner unless shatter-proof goggles are worn. Keep the picture tube away from the body while handling.
When the receiver is switched off affer operating for a time, the picture tube will retain a certain charge. Therefore it is advisable to discharge it before handling.

DEFLECTION YOKE ADJUSTMENT

If the lines of the raster are not horizontal or squared with the picture tube, rotate the deflection yoke until this condition is obtained. Tighten the yoke clamp.

FOCUS ADJUSTMENT

This adjustment has been made at the factory and it should only be necessary to re-adjust if the picture tube is replaced. In this case, adjust the focus control, RV403, until maximum definition of the line structure of the raster is obtained.

HORIZONTAL OSCILLATOR ADJUSTMENT

The adjustment of the horizontal oscillator is not considered to be part of the alignment procedure. The adjustment is made at the factory and should not require re-adjustment in the field. However, the adjustment should be carried out whenever components in the horizontal oscillator circuit are changed.

The horizontal oscillator may be adjusted by the following method:

1. Short circuit the sine wave coil, L401, and earth the sync. test point.
2. Set the horizontal hold control, RV402, to its mid position.
3. Adjust the horizontal hold pre-set control, RV401, until the picture is synchronised with the signal, i.e., picture sides are straight.
4. Remove the short circuit from the sine wave coil.
5. Adjust the core of the sine wave coil until the picture is synchronised with the signal.
6. Remove the earth from the sync. test point.

CENTRING ADJUSTMENT

As the majority of test patterns transmitted contain horizontal and vertical bars, the correct procedure for centring adjustment, horizontally or vertically, is that the corresponding bars progressing outwards from the centre should have the same amount of pin-cushion distortion (if any).
The centring magnets are in the form of two discs mounted on the rear of the deflection yoke cap. When the magnets are rotated around the tube neck so that the levers are opposite, minimum centring effect with either lever is produced. To obtain correct centring of the picture, the magnets are alternatively rotated with respect to each other.

CAUTION

Under no circumstances should the receiver be switched on with the deflection yoke removed from the picture tube. This produces an undeflected spot which may damage the screen.

WIDTH AND HORIZONTAL LINEARITY ADJUSTMENTS

The width and horizontal linearity controls, RV404 and L403, in conjunction with the vertical adjustments, are adjusted to produce best linearity for a picture of the correct aspect ratio with normal picture brightness.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS

Adjust the height control, RV303, for minimum height.
Set the top linearity control, RV304, to its mean position.
Adjust the vertical linearity control, RV305, for best overall linearity.

Re-adjust the height control, RV303, for correct height, i.e., approximately $\frac{1^{\prime \prime}}{2}$ of picture extending beyond the top and bottom of the picture tube mask.

Finally, if necessary, adjust, in conjunction with each other, the height, top linearity and vertical linearity controls for best linearity and correct height.

A.G.C. ADJUSTMENT

The following adjustments should only be performed after all other receiver adjustments have been satisfactorily carried out.

With the receiver tuned to a medium strength signal (about 1 mV or suitable attenuated signal) make the following adjustment.

With a picture of normal brightness and contrast, adjust the I.F. A.G.C. control RV301 for snow threshold.

Note: Clockwise rotation of the I.F. A.G.C. control increases snow.

REPLACEMENT OF FUSES

Two 1.5 amp. fuses are provided for mains and H.T. protection. Their location and function are indicated on the layout diagram.

ALIGNMENT PROCEDURE

Testing Instruments

To properly service the television receiver it is recommended that the following test equipment be available:

1. A.W.A. Television Sweep Generator, type A56036.
2. A.W.A. Cathode Ray Oscilloscope (c.r.o.), type A56031.
3. A.W.A. Voltohmyst, type 2A56074.
4. A.W.A. Voltohmyst Probe, type $2 R 56075$.
5. A.W.A. Television Calibrator, type A56057.

Sound and Video I.F. Alignment

Note: When two positions of the core appear to give the correct adjustment, the following apply:
*Coil tuned with core close to the chassis.
\dagger Coil tuned with core close to the can top, i.e., remote from chassis.

Sound I.F. Alignment

Connect the output of the television calibrator to the video detector test point and set the frequency to $5.5 \mathrm{Mc} / \mathrm{s}$.

Connect the voltohmyst d.c. probe to pin 2 of V102 (6AL5) and set the range switch to -5 volts d.c.

Short circuit pin 1 of V203 (3rd video I.F. grid) to ground. Adjust the following cores for peak output varying the input to maintain a reading of about -2 volts.

TR101 secondary (ratio detector bottom core)*
TR101 primary (top core) \dagger
L101 (sound take off coil)*
L206 (sound trap)*
Repeat this sequence once.
Transfer the Voltohmyst probe to the junction of R104 and C109.

Re-adjust TR101 secondary (bottom core) for zero reading on the Voltohmyst.

Set the calibrator modulation switch to $600 \mathrm{c} / \mathrm{s}$.
Connect the c.r.o. to the video out test point through a crystal probe (Voltohmyst probe 2R56075 is suitable).

Set the contrast control at its maximum position.
Re-qdjust L206 (sound trap) * for minimum $600 \mathrm{c} / \mathrm{s}$ on the c.r.o.

Remove television calibrator, Voltohmyst and short circuit on V203 grid.

Video I.F. Alignment

Short circuit the junction of R304 and R306 to earth. Connect a source of -3 volts bias to the junction of R201 and C204.

With the tuner on the blank channel, connect the sweep generator (30-39 Mc/s sweep, correctly terminated) to the mixer grid of the tuner, through the network shown in Fig. 1.

T1195
FIG. I
Connect the crystal detector probe (Fig. 2) to pin 5 of V201 (1st Video I.F. plate) and also by-pass pin 5 of V202 using the by-pass lead provided.

Set the sweep generator output to give maximum deflection on the c.r.o. of 0.3 volts p-p. It is suggested that the marker generator be connected to the centre spigot on the socket of V201 and the earth lead connected to the chassis.

Set the marker generator to $38.375 \mathrm{Mc} / \mathrm{s}$ and adjust L201 \dagger so that the marker appears in the dip of the response produced by the trap, i.e., tune the trap to $38.375 \mathrm{Mc} / \mathrm{s}$.

Adjust L2*, L202* and trimmer C203 to produce the response on the c.r.o. shown in Fig. 3.

11108
FIG. 3
L2* mainly affects 36.875 marker position
L202* mainly affects tilt.
C203 mainly affects the band width.

Overall Alignment

Remove the crystal probe and connect the c.r.o. to the video detector test point using the network shown in Fig. 4. It is suggested that the marker generator remain connected to the centre spigot of V2O1 socket.

View overall response with approximately 3 volts p-p output and adjust the accompanying sound trap TR202 (top core) \dagger for minimum response at $30.875 \mathrm{Mc} / \mathrm{s}$ increasing the c.r.o. gain if necessary for easier adjustment of the trap.

Re-set the c.r.o. gain to give 3 volts p-p and adjust for a response as shown in Fig. 5.

Marker $36.875 \mathrm{Mc} / \mathrm{s}$ at 30% TR202*
Marker $31.375 \mathrm{Mc} / \mathrm{s}$ at $4 \%-6 \%$ TR201*
No tilt TR203*
Check that the $32.625 \mathrm{Mc} / \mathrm{s}$ marker is at $50 \%-65 \%$, otherwise re-adjust TR201* and correct tilt with TR203* if necessary.

Code No		DESCRIPTIO	Part No.	Code No.		ESCRIPIIO		Part No.	
RESISTORS				RESISTORS (cont.)					
All Resistors composition type unless otherwise stated.				$\begin{aligned} & \text { R313 } \\ & \text { R314 } \end{aligned}$	1.5 Megohms	$\pm 10 \%$	$\frac{1}{2}$ watt		
				680 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt			
R2	1 K ohms	$\pm 20 \%$	$\frac{1}{2}$ watt		R315	Not used			
R3	33 K ohms	$\pm 20 \%$	$\frac{1}{2}$ watt	R316	22 K ohms	$\pm 10 \%$	2 watts		
R4	2.2 K ohms	$\pm 10 \%$	1 watt	R317 R318	27 K ohms	$\pm 10 \%$	2 watts		
R5	2.2 K ohms	$\pm 20 \%$	$\frac{1}{2}$ watt	R318 R319	82 K ohms	10\%	$\frac{1}{2}$ watt 1 watt		
R6	4.7 K ohms	$\pm 10 \%$	1 watt	R320	Not used	\%			
R7	10K ohms	$\pm 20 \%$	$\frac{1}{2}$ watt	R321	1 Megohm	$\pm 10 \%$	$\frac{1}{2}$ watt		
R8	Not used			R322	68 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt		
R9	2.2K ohms	$\pm 20 \%$	$\frac{1}{2}$ watt	R323	220 K ohms	$\pm 10 \%$	$1 \text { watt (IRC) }$		
R101	220 ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	R324 R325	100K ohms Not used	$\pm 10 \%$	1 watt		
R102	56 K ohms	$\pm 10 \%$	2 watts	R326	33 K ohms	$\pm 10 \%$	1 watt		
R103	47 ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	R327	33 Megohms	$\pm 10 \%$	1 watt		
R104	15K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	R328	680 K ohms	$\begin{aligned} & \pm 10 \% \\ & +10 \% \end{aligned}$	1 watt(Ducono	or Morg.)	
R105	Not used			R329	680K ohms Not used.	$\pm 10 \%$	$\frac{1}{2}$ watt(Duconor	Morg.)	
R106	4.7 K ohms	$\pm 5 \%$	$\frac{1}{2}$ watt	R331	6.8 Megohms	$\pm 10 \%$	1 watt		
R107	4.7K ohms	$\pm 5 \%$	$\frac{1}{2}$ watt	R332	270K ohms	$\pm 10 \%$	1 watt (IRC)		
R108	10 Megohms	$\pm 10 \%$	$\frac{1}{2}$ watt	R333	4.7 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt		
R109	3.3 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	$\begin{aligned} & \text { R334 } \\ & \text { R335 } \end{aligned}$	1.2 Megohms Not used.	$\pm 10 \%$	1 watt		
R110	Not used			R336	68 K ohms	$\pm 10 \%$	1 watt(Ducon	Morg.)	
R111	330 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	R337	2.2 Megohms	$\pm 10 \%$	1 watt (IRC)		
R112	10K ohms	$\pm 20 \%$	$\frac{1}{2}$ watt	R338	680 ohms	$\pm 10 \%$	5 watts W.W.		
R113	270 ohms	$\pm 10 \%$	1 watt	R339	270 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt		
R201	2.2 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	R340	Not used. 100K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt		
R202	47 ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	R342	100 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt		
R203	470 ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	R343	1.2 Megohms	$\pm 10 \%$	$\frac{1}{2}$ watt		
R204	8.2 K ohms	$\pm 5 \%$	$\frac{1}{2}$ watt	R344					
R205	Not used			R401	470 K ohms 470 K ohms	$\pm 10 \%$ $\pm 10 \%$	$\frac{1}{2}$ watt		
R206	150K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	R403	390 K ohms	+	$\frac{1}{2}$ watt		
R207	120K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	R404	33 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt		
R208	15K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	R405	820K ohms	$\pm 10 \%$	1 watt		
R209	39 ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	R406	47 K ohms 2.2 K ohms	$\pm 10 \%$ $\pm 5 \%$	1 watt		
R210	Not used			R408	68 K ohms	士 10%	1 watt		
R211	8.2K ohms	$\pm 5 \%$	$\frac{1}{2}$ watt	R409	47K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt		
R212	1.5K ohms	$\pm 20 \%$	$\frac{1}{2}$ watt	R410	Not used.				
R213	150 ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	R411	1 K ohm 15 K ohms	$\pm 20 \%$ $\pm 10 \%$	$\frac{1}{2}$ watt		
R214	39 K ohms	$\pm 10 \%$	1 watt	R412 R413	15 K ohms 27 K ohms	$\pm 10 \%$ $\pm 10 \%$	$\frac{1}{\frac{1}{2} \text { watt }}$		
R215	Not used			R414	1 K ohm	$\pm 20 \%$	$\frac{1}{2}$ watt		
R216	3.3K ohms	$\pm 10 \%$	1 watt	R415	Not used.				
R217	Not used			R416	680K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt		
R218	2.7K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	R417	100 K ohms	\pm	$\frac{1}{\frac{1}{2}}$ watt ${ }_{5}$ watts W W		
R219	470 ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	R418	2.7 K ohms 1 Megohm	$\pm 10 \%$ $\pm 10 \%$	5 watts W.W.		
R220	Not used			R420	Megohm	$\pm 10 \%$			
R221	10 ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	R421	820 K ohms	$\pm 10 \%$	1 watt BTAV		
R222	33 ohms	$\pm 10 \%$	a 2 2 watt watts	R422		$\pm 10 \%$	$\frac{1}{2}$ watt W.W.		
R223	18 K ohms	$\pm \begin{aligned} & \pm 10 \% \\ & \pm 5 \%\end{aligned}$	2 watts 7 watts W.W.	R423	680K ohms	$\pm 20 \%$	$\begin{aligned} & \frac{1}{2} \text { wait } \\ & \frac{1}{2} \end{aligned}$		
R224	4.7 K ohms	$\pm 5 \%$	$\frac{7}{\frac{1}{2}}$ watts W.W.	R424	470 K ohms	$\pm 10 \%$	1 watt		
R225	1 K ohm	$\pm 10 \%$ $\pm 10 \%$	$\frac{1}{2}$ watt	R425	Not used.				
R226	12 K ohms 3.3 K ohms	$\pm 10 \%$ $\pm 10 \%$	$\frac{1}{2}$ watt	R426	390 K ohms	$\pm 10 \%$	1 watt		
R228	47 K ohms	$\pm 10 \%$	2 watts	R427	1 K ohm	$\pm 20 \%$	$\frac{1}{2}$ watt		
R229	220 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	R428	150 ohms	$\pm 10 \%$	$\frac{1}{2}$ watt $\}$ In		
R230	Not used			R429	150 ohms	$\pm 10 \%$	$\frac{1}{2}$ watt \int Yoke		
R231	3.9 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	R430	Not used.				
R232	47 ohms	$\pm 10 \%$	$\frac{1}{2}$ watt(Ducon or Morg.)	R431 RV101	3.3K ohms	$\pm 10 \%$	7 watts W.W.		
R233	3.3 Megohms	$\pm 20 \%$	年 ${ }^{\frac{1}{2}}$ watt	RV101	1 Megohm Cu	C Carbo	Tone Volume	*	
R301	47 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	RV102	500 K ohms C	e C Carbo	Volume	620226	
R302	680 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	RV201	15K ohms Cu	A Carbon	Contrast	620226 62056	
R303	10 Megohms	$\pm 10 \%$	1 watt	RV301	500 K ohms C	e A Carb	, I.F. A.G.C.	620569	
R304	470K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	RV302	250 K ohms C	e A Carb	Vert. Hold	620472	
R305	150 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	RV303	500 K ohms C	e A Carb	Height	620569	
R306	33 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	RV304	200 K ohms C	A Carbo	Top Linearity	620487	
R307	47 K ohms	$\pm 5 \%$	1 watt	RV305	100K ohms C	A Carbon	Vert. Linearity	620322	
R308	47 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	RV306	500K ohms C	e A Carb	, Brightness	*	
R309	150K ohms	$\pm 10 \%$	1 watt	RV401	25 K ohms Cu	A Carbon	Hor. Hold Pre-set	620249	
R310	Not used			RV402	25 K ohms Cu	A Carbo	Hor. Hold	620248	
R311	180K ohms	$\pm 5 \%$	1 watt	RV403	2.5 Megohms	rve A Carba	n, Focus	620781	
R312	33 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	RV404	1 Megohm Cu	A Carbo	Width	620769	

[^1]| Code No. | DESCRIPTION Part No. | Code No. | DESCRIPTION | Part No. |
| :---: | :---: | :---: | :---: | :---: |
| CAPACITORS | | CAPACITORS (cont.) | | |
| C1 | $3.3 \mathrm{pF} \pm 10 \% \mathrm{NPO}$ disc | C308 220pF $\pm 10 \% 630 \mathrm{VW}$ polystyrene | | |
| C2 | $2.2 \mathrm{pF} \pm 5 \%$ NPO disc | C309 | $270 \mathrm{pF} \pm 10 \%$ N750 tubular | |
| C3 | $18 \mathrm{pF} \pm 5 \%$ NPO feed thru | C310 | $0.0022 \mu \mathrm{~F} \pm 10 \% 400 \mathrm{VW}$ polyester | |
| C4 | $3.3 \mathrm{pF} \pm 10 \%$ NPO disc | C311 | $0.0082 \mu \mathrm{~F} \pm 10 \%$ 400VW polyester | |
| C5 | $15 \mathrm{pF} \pm 5 \%$ NPO disc | C312 | $0.022 \mu \mathrm{~F} \pm 10 \%$ 400VW polyester | |
| C6 | $0.001 \mu \mathrm{~F}+100 \%-0 \%$ Hi-K feed | C313 | $0.018 \mu \mathrm{~F} \pm 10 \%$ 400VW polyester | |
| C7 | 1-5pF trimmer | C314 | $0.039 \mu \mathrm{~F} \pm 10 \%$ 400VW polyester | |
| C8 | 0.5-3 pF trimmer | C315 | Not used. | |
| C9 | $100 \mathrm{pFF} \pm 7 \frac{1}{2} \% \mathrm{~N} 3300$ feed thru | C316 | $0.1 \mu \mathrm{~F} \pm 10 \%$ 160VW polyester | |
| C10 | $27 \mathrm{pF} \pm 5 \%$ NPO disc | C317 | $0.1 \mu \mathrm{~F} \pm 10 \%$ 400VW polyester | |
| C11 | $0.001 \mu \mathrm{~F}+100 \%-0 \%$ Hi-K feed thru | C318 | $0.01 \mu \mathrm{~F} \pm 10 \% 400 \mathrm{VW}$ polyester | |
| C12 | $0.5-3 \mathrm{pF}$ trimmer | C319 | $0.0033 \mu \mathrm{~F} \pm 10 \% 400 \mathrm{VW}$ polyester | |
| C13 | $0.001 \mu \mathrm{~F}+100 \%-0 \%$ Hi-K feed thr | C320 | $2 \mu \mathrm{~F} 500 \mathrm{VW}$ Electrolytic | 227934 |
| C14 | 0.68 pF special | C321 | $0.047 \mu \mathrm{~F} \pm 10 \% 600 \mathrm{VW}$ paper | |
| C15 | $470 \mathrm{pF} \pm 20 \% \mathrm{~K} 2000$ tubular | C322 | $0.1 \mu \mathrm{~F} \pm 10 \% 400 \mathrm{VW}$ polyester | |
| C16 | $56 \mathrm{pF} \pm 10 \%$ N750 tubular (TBI) | C323 | $0.1 \mu \mathrm{~F} \pm 10 \% 400 \mathrm{VW}$ polyester | |
| C17 | $5.6 \mathrm{pF}+5 \%-0 \%$ N150 disc$5.6 \mathrm{pF} \pm 2 \frac{1}{2} \%$ N 150 disc | C324 | $0.1 \mu \mathrm{~F} \pm 20 \%$ 1000VW paper | |
| C18 | | C325 | Not used. | |
| C19 | $5.6 \mathrm{pF}+0 \%-5 \%$ N150 disc | C326 | $0.039 \mu \mathrm{~F} \pm 10 \% 400 \mathrm{VW}$ polyester | |
| C20 | $0.001 \mu \mathrm{~F}+100 \%-0 \%$ Hi-K feed thru | C327A | $60 \mu \mathrm{~F} 275 \mathrm{VW}$ \} Electrolytic | |
| C22 | 220pF $\pm 20 \%$ Hi-K disc | C327B | $200 \mu \mathrm{~F} 275 \mathrm{VW}$ f Electrolytic | 229767 |
| CN | | C328 | $0.1 \mu \mathrm{~F} \pm 10 \% 160 \mathrm{VW}$ polyester | |
| C101 | $6.8 \mathrm{pF} \pm 5 \%$ NPO tubular (in L101)$39 \mathrm{pF} \pm 5 \%$ N220 disc (in L101) | C329 | $0.022 \mu \mathrm{~F} \pm 10 \% 400 \mathrm{VW}$ polyester | |
| C102 | | C330 | Not used. | |
| C103 | $0.0039 \mu \mathrm{~F} \pm 10 \%$ 400VW polyester | C331 | $2 \mu \mathrm{~F} 200 \mathrm{VW}$ Electrolytic | 227933 |
| C104 | 100pF $\pm 5 \% 630 \mathrm{VW}$ polystyrene (in TR101) | C332 | $0.1 \mu \mathrm{~F} \pm 10 \%$ 400VW polyester | |
| C105 | | C401 | $150 \mathrm{pF} \pm 10 \% 400 \mathrm{VW}$ polystyrene | |
| C106 | 470pF $\pm 5 \% 630 \mathrm{VW}$ polystyrene$470 \mathrm{pF} \pm 5 \% 630 \mathrm{VW}$polystyrene | C402 | $0.1 \mu \mathrm{~F} \pm 10 \% 160 \mathrm{VW}$ polyester | |
| C107 | | C403 | $150 \mathrm{pF} \pm 10 \% 400 \mathrm{VW}$ polystyrene | |
| C108 | $0.22 \mu \mathrm{~F}+80 \%-20 \%$ 25VW Hi-K disc | C404 | $0.0022 \mu \mathrm{~F} \pm 10 \% 400 \mathrm{VW}$ polyester | |
| C109 | $0.0047 \mu \mathrm{~F} \pm 10 \% 400 \mathrm{VW}$ polyesterNot used. | C405 | Not used. | |
| C110 | | C406 | $0.001 \mu \mathrm{~F} \pm 10 \%$ 400VW polyester | |
| C111 | $0.01 \mu \mathrm{~F} \pm 10 \% 160 \mathrm{VW}$ polyester | C407 | $0.0047 \mu \mathrm{~F} \pm 10 \% 400 \mathrm{VW}$ polyester | |
| C112 | $0.0068 \mu \mathrm{~F} \pm 10 \%$ 400VW polyester | C408 | $0.0027 \mu \mathrm{~F} \pm 10 \% 400 \mathrm{VW}$ polyester | |
| C113 | $0.0033 \mu \mathrm{~F} \pm 10 \%$ 400VW polyester | C409 | $0.22 \mu \mathrm{~F} \pm 10 \%$ 160VW polyester | |
| C114 | $0.0018 \mu \mathrm{~F} \pm 10 \% 400 \mathrm{VW}$ polyester | C410 | Not used. | |
| C201 | $5.6 \mathrm{pF} \pm 5 \%$ NPO disc | C411 | $150 \mathrm{pF} \pm 10 \% 630 \mathrm{VW}$ polystyrene | |
| C202 | $12 \mathrm{pF} \pm 5 \%$ NPO tubular | C412 | $24 \mu \mathrm{~F} 300 \mathrm{VW}$ Electrolytic | 222812 |
| C203 | 4-10pF trimmer 231123 | C413 | $680 \mathrm{pF} \pm 5 \%$ 630VW polystyrene | |
| C204 | $0.0047 \mu \mathrm{~F}+100 \%-0 \% \mathrm{~K} 5000$ disc | C414 | $22 \mathrm{pF} \pm 10 \%$ NPO tubular | |
| C205 | $0.0047 \mu \mathrm{~F}+100 \%-0 \%$ K5000 disc | C415 | Not-used. | |
| C206 | $270 \mathrm{pF} \pm 5 \%$ 630VW polystyrene | C416 | $0.001 \mu \mathrm{~F} \pm 10 \% 400 \mathrm{VW}$ polyester | |
| C207 | $0.0047 \mu \mathrm{~F}+100 \%-0 \%$ K5000 disc | C417 | $680 \mathrm{pF} \pm 5 \% 630 \mathrm{VW}$ polystyrene | |
| C208 | $0.0047 \mu \mathrm{~F}+100 \%-0 \%$ K5000 disc$0.0047 \mu \mathrm{~F}+100 \%-0 \%$ K5000 disc | C418 | $0.01 \mu \mathrm{~F} \pm 10 \% 160 \mathrm{VW}$ polyester | |
| C209 | | C419 | $27 \mathrm{pF} \pm 10 \%$ N1500 tubular | |
| C210 | Not used. | C420 | Not used | |
| C211 | $390 \mathrm{pF} \pm 5 \%$ 630VW polystyrene | C421 | $0.1 \mu \mathrm{~F} \pm 10 \% 400 \mathrm{VW}$ polyester | |
| C212 | $18 \mathrm{pF} \pm 5 \%$ NPO tubular (in TR202) | C422 | $0.047 \mu \mathrm{~F} \pm 10 \%$ 1000VW paper | |
| C213 | $0.0047 \mu \mathrm{~F}+100 \%-0 \%$ K5000 disc | C423 | $0.047 \mu \mathrm{~F} \pm 10 \%$ 1000VW paper | |
| C214 | $0.001 \mu \mathrm{~F}+100 \%-0 \% \mathrm{~K} 5000$ feed thruNot used. | C424 | $270 \mathrm{pF} \pm 10 \% 2500 \mathrm{VW}$ N750 tubular | |
| C215 | | C425 | $0.0047 \mu \mathrm{~F}+100 \%-0 \%$ 25VW K5000 | |
| C216 | $0.0047 \mu \mathrm{~F}+100 \%-0 \% \mathrm{~K} 5000$ disc | C426 | $270 \mathrm{pF} \pm 10 \%$ 2500VW N750 tubular | |
| C217 | $0.0047 \mu \mathrm{~F}+100 \%-0 \%$ K5000 disc$470 \mathrm{pF}+5 \% 630 \mathrm{VW}$ polystyrene | C427 | $0.18 \mu \mathrm{~F}+10 \% 400 \mathrm{VW}$ paper | |
| C218 | | C428 | $68 \mathrm{pF} \pm 10 \%$ 2000VW N750 tubular | |
| C219 | $0.0047 \mu \mathrm{~F}+100 \%-0 \% \mathrm{~K} 5000$ disc | C429 | $0.1 \mu \mathrm{~F} \pm 10 \% 400 \mathrm{VW}$ polyester | |
| C220 | Not used. | C430 | Not used. | |
| C221 | $2.2 \mathrm{pF} \pm 20 \%$ NPO disc (in TR203) | C431 | $100 \mu \mathrm{~F}$ 150VW Electrolytic | 229651 |
| C222 | $4.7 \mathrm{pF} \pm 10 \%$ N750 bead (in TR203) | C432 | $100 \mu \mathrm{~F}$ 150VW Electrolytic | 229651 |
| C223 | $0.022 \mu \mathrm{~F} \pm 10 \%$ 160VW polyester | | | |
| C224 | $0.01 \mu \mathrm{~F} \pm 10 \%$ 160VW polyester | | | |
| C225 | $2.2 \mathrm{pF} \pm 20 \%$ NPO disc | | | |
| C226 | $39 \mathrm{pF} \pm 10 \%$ N220 disc | | | |
| C227 | $\begin{array}{ll}2 \mu \mathrm{~F} \mathrm{300VW} \text { Electrolytic } & 227923 \\ 47 \mathrm{pF} \pm 10 \% \text { N750 tubular }\end{array}$ | | | |
| C228 | | | | |
| C229 | $39 \mathrm{pF} \pm 10 \%$ N750 tubular | | | |
| C230 | Not used.$2 \mu \mathrm{~F}$300 VWElectrolytic | | | |
| C231 | | | | |
| C232 | $12 \mathrm{pF} \pm 10 \%$ N750 tubular | | | |
| C233 | $0.22 \mu \mathrm{~F} \pm 10 \%$ 160VW polyester | | | |
| C234 | $0.47 \mu \mathrm{~F} \pm 10 \%$ 160VW polyester | | | |
| C301 | $0.1 \mu \mathrm{~F} \pm 10 \%$ 160VW polyester | | | |
| C302 | $0.1 \mu \mathrm{~F} \pm 10 \%$ 160VW polyester | | | |
| C303 | $0.0039 \mu \mathrm{~F} \pm 10 \% 400 \mathrm{VW}$ polyester | | | |
| C304 | $0.022 \mu \mathrm{~F} \pm 10 \% 400 \mathrm{VW}$ polyester | | | |
| C305 | Not used. | | | |
| C306 | $0.0039 \mu \mathrm{~F} \pm 10 \% 400 \mathrm{VW}$ polyester | | | |
| C307 | $0.0047 \mu \mathrm{~F} \pm 10 \% 400 \mathrm{VW}$ polyester | | | |

Code No.	description	Part No.	Code No.	description	Part No.
INDUCTORS			VALVES AND DIODES		
11	$36.875 \mathrm{Mc} / \mathrm{s}$ Trap	41859	V101	Radiotron 6AU6	
L2	Converter I.F. Coil	41859	V102	Radiotron 6AL5	
13	Not used		V103	Radiotron 6AV6	
14	Oscillator Filament Choke	41866	V104	Radiotron 6AQ5	
15	Screen Inductor Coil	45017	V201	Radiotron 6BZ6	
La-Lh	Tuning Coil Assembly		V202	Radiotron 6CB6	
	Channel 0	45055	V203 V204	Radiotron 6CB6 Radiotron 6EB8	
	Channel 1	45056	V205	Radiotron Picture Tube	
	Channel 2	45057	V301	Radiotron 6CB6	
	Channel 3	45058	V401	Radiotron 6AL5	
	Channel 4	45059	V402	Radiotron 12AU7A	
	Channel 4	45059	V403	Radiotron 6CM5	
	Channel 5	45060	V404	Radiotron 6AU4-GTA	
	Channel 5A	45061	V405	Radiotron 1B3-GT	
	Channel	45062	MR201	AWV IN87A	
	Channel		MR202	AWV IN3193	
	Channel 7	45063	MR401	AWV IN3194	
	Channel 8	45064	MR402	AWV IN3194	
	Channel 9	45065	MISCELLANEOUS		
	Channel 10	45066			
	Channel 11	45067	VDR301	Voltage Dependent Resistor E298ED/A262	619507
			VDR302	Voltage Dependent Resistor E298ED/A260	619561
V1	Radiotron 6GK5		VDR401	Voltage Dependent Resistor E29822/06	619562
V2	Radiotron 6HG8		FS401	1.5 Amp. Fuse	370023
L101	Sound I.F.	43336	FS402	1.5 Amp. Fuse	370023
$\begin{aligned} & \mathrm{L} 201 \\ & \mathrm{~L} 202 \end{aligned}$	$38.375 \mathrm{Mc} / \mathrm{s} \text { Trap }$ I.F. Input	43580	$\begin{aligned} & \text { SW301 } \\ & \text { SG301 } \end{aligned}$	Power On-Off Switch Spark Gap (BTS Blank)	600000
L203	Detector Filter	40323	SG401	Spark Gap (BTS Blank)	600000
L204	Detector Filter	49671	MECHANICAL		
L205	Detector Peaking	41423			
L206	Sound I.F. Trap $5.5 \mathrm{Mc} / \mathrm{s}$	43593	Anode Cap and Lead, Hor. Output		
L207	Video Ampl. Shunt Peaking	40117			40044
L208	Video Peaking	45090	Cap Ass'y, Yoke	Clamp Body, Power Cable	41185 208056
L209	Video Ampl. Series Peaking	41423	Clamp Lock, Power Cable		208507
L301	Ferrox Cube Bead	132011	Clamp, Yoke Cap		41186
L401	Sine Wave	52150	E.H.T. Box, Lid		41310
L402	H.F. Choke $1.5 \mu \mathrm{~F}$	214516	E.H.T. Box, Side		41309
L403	Horizontal Linearity	43264	Fuse Holder H.T.		49075
$\llcorner 404$	Vertical Deflection Coil		Fuse Holder, Mains		40845
$\llcorner 405$	Vertical Deflection Coil Yoke	43665	Lead Ass'y, Ultor		49545
L406	Horizontal Deflection Coil Yoke	43665	Screen, Valve (4)		653013
1407	Horizontal Deflection Coil J		Screen, Valve (1)		653014
1408	H.T. Filter Choke	51571/001	Shield A	s'y, Corona	41062
	TRANSFORMERS		Shield A	ss'y, Video Det.	42378
			Shield,	Sound I.F.	45141
TR1	Balun Assembly	44004	Shield, T	nnel	42429
TR101	Ratio Detector	40077	Socket,	Kinescope	794629
TR102	Speaker Transformer	*	Socket,	pin	794616
TR201	1st Video I.F.	40902	Socket,	pin with Saddle pin with Skirt	794615
TR202	2nd Video I.F.	41407	Socket,	pin Moulded Push-in	794579
TR203	3rd Video I.F.	41933	Socket,	pin Wafer	793033
TR301	Vertical Output	43340/001	Socket,	pin Mica Filled	794582
TR401	E.H.T. Transformer	52536	Socket,	pin Moulded	794599
TR402	Power Transformer	53547/001	Test Poi	t Ass'y	41085

[^2]CHASSIS LAYOUT

(1)

D.C. RESISTANCE OF WINDINGS

WINDING		D.C. RESISTANCE IN OHMS	WINDING		D.C. RESISTANCE IN OHMS
Tuner	Windings	*	TR102	Speaker Transformer	
L101	Sound I.F.	1.3		Primary	500
L201	$38.375 \mathrm{Mc} / \mathrm{s}$ Trap	*		Secondary	2
L202	Video I.F. Input	*	TR201	1st Video I.F.	
L203	Detector Filter	1.5		Primary	*
L204	Detector Filter	*		Secondary	*
L205	Detector Peaking Coil	5	TR202	2nd Video I.F.	
L206	$5.5 \mathrm{Mc} / \mathrm{s}$ Trap	7		Primary	*
L207	Video Amp. Shunt Peaking	6.8		Secondary	*
L208	Video Amp. Peaking	3.2	TR203	3rd Video I.F.	
L209	Video Amp. Series Peaking	5		Primary	*
L401	Sine Wave Coil	55		Secondary	*
1402	H.F. Choke	5	TR301	Vertical Output	
1403	Horizontal Linearity	7		Primary Bu-Rd	350
L404	Vertical Deflection	25		Secondary Rd-Ye	1
		2.5	TR401	Horizontal Output	
L405	Vertical Deflection	2.5		Primary C-A	23
L406	Horizontal Deflection	17		Secondary G-B	7
1407	Horizontal Deflection	17		Tertiary C-Top Cap	415
1408	H.T. Filter Choke	25		Tertiary J-L	1.5
TR101	Ratio Detector		TR402	Power Transformer	
	Primary	9.5		Primary Gn-Or	10
	Secondary	1		Secondary Rd-Rd	4.5

*Less than 1 ohm.
The above readings were taken on a standard chassis, but substitution of materials during manufacture may cause variations and it should not be assumed that a component is faulty if a slightly different reading is obtained.
A. W. BOUNDS PTY. LTD., PRINTERS, GLEBE, SYDNEY

AWA
FIELD TEST SHEET 50-00 SERIES

COMPONENT REPLACEMENTS

D.C. RESISTANCE

under chassis view
circuit variations:
The following chan gos have been incorporated in this
chasis since the release of the initial service information.

(2)
matal INPuT

on volomyst
(1) AR

$$
\overbrace{\text { ditled }}^{\text {R112 }}
$$

Chen

$$
\begin{gathered}
\text { PLICTOESE } \\
\text { vUBE }
\end{gathered}
$$

$$
1
$$

Revised Horizontal Linearity and Width Adjustment Adjust the horizontal linearity coil (L403) to give minimum voltage reading at the 6CM5 cathode test point (across R420),
N.B.-From this position the linearity control may be no more than two turns in either direction,
Set the width control (RV404) to give B boost voltage junction of C422 and C423 of 610 B boost voltage width should not overscan more than $\frac{3}{4 \prime \prime}$ on either side with nominal 240 volts mains.

TB. Series Neutrode Tuner

50-00 SERIES TV CHASSIS

PROVISIONAL INFORMATION ONLY
50-00 SERIES TV CHASSIS

Retain for Service

A) Mex max

TB. Series Neutrode Tuner

 (1)

$$
\begin{aligned}
& y_{7} \\
& s_{7} \\
& s_{7}
\end{aligned}
$$

$$
\begin{gathered}
2 \\
\left.=-\cos ^{2} / 5\right)
\end{gathered}
$$

Label 68037 A

[^0]:

[^1]: * Varies with models.

[^2]: * Varies with models.

