# A.W.A. RADIOLA Television Receiver Chassis 40-00 Series <br> ISSUED BY AMALGAMATED WIRELESS (AUSTRALASIA) LTD. 

## GENERAL DESCRIPTION

The 40-00 series chassis are 20 valves, A.C.-operated Television Receivers.
Features of design include: Neutrode tuner; hinge-down chassis; three-stage I.F. amplifier; gated a.g.c.; phase discriminator a.f.c. horizontal system; frequency selective noise detector; horizontal and vertical sweep stabilisation; $110^{\circ}$ deflection; electrostatic dynamic focus; aluminised picture tube; ratio detector; separate sound detector.

## ELECTRICALAND MECHANICAL SPECIFICATIONS

## INTERMEDIATE FREQUENCIES

Video I.F. Carrier Frequency $\ldots \ldots . .36 .375 \mathrm{Mc} / \mathrm{s}$
Sound I.F. Carrier Frequency $\ldots \ldots .31 .375 \mathrm{Mc} / \mathrm{s}$

POWER CONSUMPTION: 170 watts maximum.

UNDISTORTED AUDIO POWER OUTPUT: 2.5 watts max.

VIDEO RESPONSE
To $4.5 \mathrm{Mc} / \mathrm{s}$
fOCUS .............. Electrostatic (Low Voltage)

DEFLECTION
$110^{\circ}$ Magnetic

## Valve complement:



DIODES:

| MR201 IN87A | Sound Detector |
| :---: | :---: |
| MR202 IN87A | Video Detector |
| MR401 IN3194 | Rectifier |
| MR402 IN3194 | Rectifier |

## HIGH VOLTAGE WARNING

Operation of this receiver outside the cabinet involves a shock hazard from the receiver power supplies. Work on the receiver should not be attempted by anyone who is not thoroughly familiar with the precautions necessary when working on high voltage equip. ment. Do not operate the receiver with the high voltage compartment shield removed. Make sure that the earth strap between the chassis and the picture tube assembly is securely fastened before turning the receiver on.

## PICTURE TUBE HANDLING PRECAUTIONS

Do not insíall, remove or handle the picture tube in any manner unless shatter-proof goggles are worn. People not so equipped should be kept away from the area where the picture tube is being handled. Keep the picture tube away from the body while handling.

When the receiver has been switched off after operating for a time, the picture tube will retain a certain charge. Therefore it is advisable to discharge it before handling.

## OPERATING TESTS

## DEFLECTION YOKE ADJUSTMENT (Fig. 11

If the lines of the raster are not horizontal or squared with the picture tube, rotate the deflection yoke until this condition is obtained. Tighten the yoke clamp.


FIG. I
NOTE: Rotational directions specified are viewed from the spindle end or, when no spindle is visible, from the rear cabinet end.

## FOCUS ADJUSTMENT

This adjustment has been made at the factory and it should only be necessary to re-adjust if the picture tube is replaced. In thiș case adjust the focus cọntrol, RV402, until
maximum definition of the line structure of the raster is obtained.

## HORIZONTAL OSCILLATOR ADJUSTMENT

The adjustment of the horizontal oscillator is not considered to be part of the alignment procedure. The adjustment is made at the factory and should not require readjustment in the field. However, the adjustment should be carried out whenever components in the horizontal oscillator circuit are changed. The width should be correctly set before adjustments are carried out.

The horizontal oscillator may be adjusted by the following method:-

NOTE: Under normal circumstances, unless C408, C409 or L401 are replaced, no sine wave coil adjustment will be required, and the correct horizontal oscillator conditions will be obtained by following step 5 below.

1. Short circuit the sine wave coil, L401, and short circuit the phase discriminator test point to ground.
2. Adjust the horizontal hold control, RV403, until the picture is synchronised with the signal, i.e., picture sides are straight.
3. Remove short circuit from sine wave coil.
4. Adjust the sine wave coil until the picture is synchronised with the signal.
5. Remove the short circuit from the phase discriminator test point.
6. Set the horizontal hold control, RV403, for 0 volts d.c. at the phase discriminator test point.

## CENTRING ADJUSTMENT

As the majority of test patterns transmitted contain horizontal and vertical bars, the correct procedure for centring adjustment horizontally or vertically is that the corresponding bars progressing outwards from the centre should have the same amount of pin-cushion distortion (if any).

The centring magnets are in the form of two discs mounted on the rear of the deflection yoke cap. When the magnets are rotated around the tube neck so that the levers are opposite, minimum centring effect with either lever is produced. To obtain correct centring of the picture the magnets are alternatively rotated with respect to each other.

## CAUTION

Under no circumstances should the receiver be switched on with the deflection yoke removed from the picture tube. This may produce an undeflected spot which may damage the screen.

## WIDTH AND HORIZONTAL LINEARITY ADJUSTMENTS

The width and horizontal linearity controls, RV401 and L403, in conjunction with the vertical adjustments, are adjusted to produce best linearity for a picture of the correct aspect ratio with normal picture brightness.

## height and vertical linearity adjustments

Adjust the height control, RV307, for a picture of approximately $\frac{3}{4}$ of the normal size.

Adjust the vertical linearity control, RV305, to give a small amount of cramp at the top of the picture.

Adjust the height and top linearity controls, RV307 and RV306, to obtain a picture of normal height (approximately $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ of picture extending beyond the top and bottom of the picture tube mask).

Finally adjust the height, top linearity and vertical linearity controls for best linearity and correct height.

## A.G.C. ADJUSTMENT

Set the min. contrast and I.F. A.G.C. controls at their mid positions.

Set the contrast control fully clockwise.
Tune the receiver to the channel on which the received signal is strongest.

Set the fine tuning and adjust the A.G.C. control (RV302) for sync. clipping in the video amplifier. Back off five degrees ( $5^{\circ}$ ) further than the point at which clipping stops. If stronger signals are anticipated in the near future, back off a further ten degrees ( $10^{\circ}$ ).

Set the contrast control for minimum contrast and adjust the min. contrast control to give 20 volts p-p at the picture tube cathode. Adjust the brightness control for normal brightness and the I.F. A.G.C. control for snow threshold.

## REPLACEMENT OF FUSES

Two 1.5 amp. fuses are provided for mains and high tension protection. The location and function of these fuses are indicated on the layout diagram.

## CHASSIS REMOVAL

The method of mounting used on this chassis adds to its ease of servicing. Two wing nuts secure the top of the chassis to the cabinet while the chassis base rests in special hinge brackets.

When access is required to the wiring side of the chassis, loosen the wing nuts and swing the chassis down to its horizontal rest. This can be done without interfering with the receiver operation.

Caution! Before and during this swing down operation, make sure that the picture tube and yoke leads do not foul on the picture tube neck or chassis components.

Should the complete chassis need removing, only the following additional steps are necessary:

Remove the tuner and control panel assembly from the cabinet and attach it to the chassis (retaining screws and anchor points are provided along the i.f. side of the chassis for this purpose).

Unplug the yoke, picture tube socket, audio and ultor leads and disconnect the tuner earth strap.

Where a remote control unit is fitted, disconnect the interconnecting cables.

If the cabinet is fitted with castors remove the rear ones.
Lift the chassis to a position slightly above the horizontal and the chassis assembly will be free to slide out of its hinge brackets.

Reassembly is the reverse of the above procedure.

## ALIGNMENT PROCEDURE

## TESTING INSTRUMENTS

To properly service the television receiver it is recommended that the following testing equipment be available-
(1) Television Sweep Generator.
(2) A.W.A. Cathode Ray Oscilloscope (C.R.O.), type 1 A56069.
(3) A.W.A. Television Calibrator, type A56057.
(4) A.W.A. Voltohmyst, type 1A56074.
(5) A.W.A. Universal Measuring Bridge, type A56048.

## TESTING PADS AND CIRCUITS

(Referred to in Alignment Procedure.)


FIG. 2-CRYSTAL DETECTOR PROBE


FIG. 3

## RESPONSE CURVES

The response curves referred to throughout the alignment procedure were taken from a production set, but some variations can be expected.

## CRITICAL LEAD DRESS

All leads in the I.F. section, particularly those on by-pass capacitors, must be kept as short as possible.

Wire wound resistors should be dressed away from neighbouring components.

NOTE: When two positions of the core appear to give the correct adjustments, the following apply:-

* Coil tuned with core close to chassis.
$\dagger$ Coil tuned with core close to can top, i.e., remote from chassis.

Make sure that bias voltages are correct, as incorrect voltages will lead to wrong adjustment.

When applying markers, use smallest marker visible, otherwise response could be incorrectly displayed, i.e., removal of the marker generator should not change viewed shape of response.

Make sure that responses are viewed at correct output level as incorrect level will result in wrong adjustment. At lower levels detector non-linearity affects the shape, and at higher levels overload will alter the shape of the response.

## SOUND I.F. ALIGNMENT

Connect the output of the television calibrator to pin 2 of V203 (3rd video I.F.) and set the frequency to $5.5 \mathrm{Mc} / \mathrm{s}$.

Connect the Voltohmyst d.c. probe to the sound peak test point and set the range switch to +5 volts d.c.

Short circuit pins 5 and 6 of V201 (1st video I.F.).
Adjust the following cores for peak output varying the input to maintain a reading of about 3 volts.

TR101 secondary (ratio detector bottom core)*.
TR101 primary (top core) $\dagger$.
L102 2nd sound I.F.*
L101 1st sound I.F.*
Repeat this sequence once.
Transfer the Voltohmyst probe to the sound zero test point.
Re-adjust TR101 secondary (bottom core)* for zero reading on the Voltohmyst.

Set the calibrator modulation switch to $600 \mathrm{c} / \mathrm{s}$.
Connect the output of the television calibrator to the video detector test point.

Connect the c.r.o. to the video out test point through a crystal probe (Voltohmyst probe 2R56075 is suitable).

Adjust L207 (sound trap)* for minimum $600 \mathrm{c} / \mathrm{s}$ on the c.r.o.

Remove television calibrator, Voltohmyst and short circuit.

## VIDEO I.F. ALIGNMENT

Connect the junction of R301 and R303 to earth.
Connect a source of - 3 volts bias to the junction of L209 and C301.

Connect a source of -2.5 volts bias to tuner A.G.C. terminal.
Connect the sweep generator to pin 2 of V203 (3rd video I.F.) and set the generator to I.F. sweep.

Connect the c.r.o. to the video detector test point using the network shown in figure 3.

Adjust TR204 trap (top) t, TR203* and L204 to produce the response on the c.r.o. shown in figure 4.


Connect the c.r.o. to the junction of R214 and L203 (sound detector) using the network shown in figure 3.

## ALIGNMENT PROCEDURE

## VIDEO I.F. ALIGNMENT (continued)

Adjust TR203* to produce the response on the c.r.o. shown in figure 5.


FIG. 5
Re-check the video detector response and if necessary readjust L204.

Connect the sweep generator to the aerial input terminals on the tuner and set both sweep generator and tuner to channel 6.
Connect the crystal detector probe (figure 2) to pin 5 of V201 (1st video I.F. plate) and also by-pass pin 5 of V202 using the by-pass lead provided.

Set the tuner oscillator frequency to $212.125 \mathrm{Mc} / \mathrm{s} \pm 0.5$ $\mathrm{Mc} / \mathrm{s}$ using the fine tuning control. Set the sweep generator output to give maximum deflection on the c.r.o. of 0.3 volts p-p. It is suggested that the marker generator be connected to the centre spigot on the socket of V201 and the earth lead connected to the chassis.

Set the marker generator to $38.375 \mathrm{Mc} / \mathrm{s}$ and adjust L 201 (top core) $\dagger$ so that the marker appears in the dip of the response produced by the trap, i.e., tune the trap to 38.375 $\mathrm{Mc} / \mathrm{s}$.

Adjust L2*, L202 (bottom core)* and C204 to produce the response on the c.r.o. shown in figure 6.


FIG. 6
L2* mainly affects the 36.875 marker position.
L202* mainly affects tilt.
C204 mainly affects the band width.

Remove the crystal probe and connect the c.r.o. to the video detector test point using the network shown in figure 3. It is suggested that the marker generator remain connected to the centre spigot of the V201 socket.

View the overall response with approximately 3 volts $p-p$ output and adjust the accompanying sound trap, TR201 (top core) $\dagger$ for minimum response at $31.375 \mathrm{Mc} / \mathrm{s}$ increasing the c.r.o. gain if necessary for easier adjustment of the trap.

Re-set the c.r.o. gain to give 3 volts $\mathrm{p}-\mathrm{p}$ and adjust for a response as shown in figure 7.


Marker $36.875 \mathrm{Mc} / \mathrm{s}$ at $50 \%$ TR202*.
Marker 32.625 Mc/s at $60 \%$ TR201 (bottom core)*.
No tilt L204.
Connect the c.r.o. vertical input to pin 7 of V301 (6HS8) using the nełwork shown in figure 3 and remove the 6HS8 valve.


Adjust the bottom core of TR204* to bring the 32.875 $\mathrm{Mc} / \mathrm{s}$ marker to the top of the response curve as shown in figure 8.

With 3 volts $p-p$ at the video detector and without adjustment of the sweep generator or bias, the p-p voltage from the noise detector should not be less than 15 volts.

CIRCUIT CODE



CIRCUIT CODE


## D.C. RESISTANCE OF WINDINGS



[^0]The above readings were taken on a standard chassis, but substitution of materials during manufacture may cause variations, and it should not be assumed that a component is faulty if a slightly different reading is obtained.


T1173

## UNDER CHASSIS VIEW





el 7 herringbone pattern:








${ }^{c} 232 \mathrm{a} 2.2 \mathrm{ppt} \pm 20 \%$ NPO disc, 221494, capacitor has been added from pin 2 TR204 to centre
To reduce hum, mains and picture buzz in the sound:




 To reduce variations in height with leakkege current of c317 the present VDR303 was sustituted 17 herringbone pattern:

 ${ }_{12050}^{C 230} \mathbf{a} 2.2 \mathrm{pf} \pm 20 \%$ NPO disc capacitor was added.

Changes sine e ircuit was drawn:
To inporove Horizontal hodd Control operation:
RvaOo

R407 is now a 100 K ohms $\pm 5 \% 1$ watt 616034 Morganite resistor

${ }^{2} 5$





(For AWA Service Dept Use)

Issid By: C. P. Eng. Lab. Eng: Refer Mr. R.Elvery<br>Date Iss'd: 30.6.65<br>Issued By : F. A. Long

## A.W.A. 4000 SERIES T.V. CHASSIS

1. GENERAL DESCRIPTION

The 4000 series $T . V$. chassis is a modification of the $34-50$ series.

It is designed to give improved sound signal to noise ratio in areas where signals are very weak (i.e. below $10 \mu \mathrm{~V}$ ).

The improvement is such that on a "side by side" test, the 3450 chassis would require approximately twice the signal of the 4000 series to produce the same sound signal to noise ratio.
2. NEW DESIGN FEATURES
(a) Use of a separate sound detector
(b) A modified picture I.F. alignment procedure
(c) Use of two stages of sound IF amplification
(d) Use of a framed grid 3rd picture IF amplifier.
(e) Deletion of AGC compensator triode
(f) Retention of noise detector cirouit with modified coupling.

## 3. DESCRIPTION OF CIRCUIT CHANGES

3.1 SEPARATE SOUND DETECTOR

The level of sound carrier which can be applied to a video detector in a T.V. receiver, to give an inter-carrier (Cont?d on page 2

# 4000 T.V. Chassis <br> Page 2 30.6.65. 

$5.5 \mathrm{Mc} / \mathrm{s}$ output, is limited because of the unwanted signals which are added to the demodulated video information and cause interference. These unwanted signals are:-
(a) $5.5 \mathrm{Mc} / \mathrm{s}$
(b) edee agitation which is a beat between $5.5 \mathrm{Mc} / \mathrm{s}$ and high frequency video components
(c) sound bars which are caused by amplitude modulation of the frequency modulated sound carrier, due to the slope of the picture IF amplifier response curve.

The unwanted $5.5 \mathrm{Mc} / \mathrm{s}$ signal may be trapped out in the video amplifier circuit, but no method can remove the effects of (b) and (c) once they have been produced in the video detector.

If a second detector can be connected into the picture IF amp. at a point where the sound carrier level is high, and its function is to provide $5.5 \mathrm{Mc} / \mathrm{s}$ sound carrier only, then the levels into this detector can be set to give optimum sound performance. The picture IF cirruit can then be designed so that the video detector can be connected at a point which has the desired response curve shape and a low level of sound carrier input.

By separating the detector functions, the circuit can be designed for best performance of each of the vision and sound channels with little need for compromise.

The circuit of the two dotector system as used in the 4000 chassis is shown in Fig. 1.

The mechanical layout is such that neither detector diode is mounter within an IF can but both are located within the detector shield box.


### 3.2 PICTURE I。F。 ALIGNMENT

(a) The alignment of picture IF is modified because of above circuit (Fig. 1) and brief procedure and curves are given.

Picture IF sweep signal into 3rd Pix IF grid. CRO connected to video detector output (point A) or to sound detector output (point B).


VIDEO DETECT. "A"


SOUND DETECTOR "B"
(b) The link circuit adjustment method is as for 3450 chassis, except response shape is as below.

> 36.875
> $\mathrm{Mc} / \mathrm{s}$

(c) Overall responses


VIDEO DET.

SOUND DET.


NOISE DETECT.
(d) Accompanying Sound Trap

The trap coupled to 2nd picture IF plate circuit and tuned at $30.875 \mathrm{Mc} / \mathrm{s}$ in 3450 chassis has been moved to lst I.F. plate and tuned at $31.375 \mathrm{Mc} / \mathrm{s}$.

### 3.3 SOUND IF AMPLIFIER

Because the video amplifier no longer amplifies the inter-carrier $5.5 \mathrm{Mc} / \mathrm{s}$ sound signal, an additional sound IF amplifier is used (pentode half of 6EA8).

To ensure that optimum performance is obtained from the receiver, the alignment of the IF system (especially of the limiter grid circuit Llo2) must be carefully carried out both in the factory and the field.
3.4 FRAMED GRID PICTURE I.F. AMP.

The third picture IF amplifier has been changed from a 6CB6 to a 6EJ7 to make up the gain lost in the detector system.
3.5 DELETION OF A.G.C. COMPENSATOR

It has been found necessary to delete the AGC
(Cont'd on page 5
compensator stage because space is not available for a suitable valve to be located without a high increased cost. The circuit has been redesigned to give adequate performance without this increased cost.

The tuner AGC delay resistor has been increased from $4.7 \mathrm{M} \&$ to $10 M \Omega$ and the IF $A G C$ control increased to $1 M \Omega$, to $\mathcal{E} i v e$ a flatter AGC control characteristic.

The AGC and Minimum Contrast adjustments should be carried out as in 3450 chassis except that the input level for adjustment should be as high as possible to prevent synch. clipping at maximum signal ( 100 mV ). This method ensures that some noise pulse clipping takes place in the video amplifier.
3.6 NOISE DETECTOR

A frequency selective noise detector is again used and its coupling to the picture IF is shown in Fie. 1

Note Synch lockout can occur, due to the noise detector, when the fine tuning is set approx $2 \mathrm{Mc} / \mathrm{s}$ below nominal frequency. In this respect the performance is similar to that of the 34.50 chassis

### 4.0 VALVES AND FUNCTIONS



```
Tech Data (Service Dept)
4000 T.V. Chassis
Page 6
30.6.65
```

Semi-Conductors


Total Functions - - 33
5.0 APPLICATIONS

From approx. Issue 8, 1965 the 4000 series chassis replaces the 3450 in all "D" series receivers except school T. V.

It is required that all $D$ series receivers using the 4000 chassis pass the weak signal sensitivity test normally applied to such receivers.

A.W.A. TV TECHNICAL INFORMATION

Some improvements have recently been made to the vertical scan circuits of T.V. Receiver Chassis types $36-50$ and $40-00$ resulting in improved vertical linearity. This has been achieved by the rearranging of height and top linearity control circuits so that height and linearity variations are practically independent of each other. Also several resistors in the circuit have been varied in type so that some negative and some positive temperature coefficient types are used, to reduce change in height with temperature variations.

Because this type of vertical scan circuit is used in several earlier chassis types it is possible to overcome vertical linearity problems by modifying the circuit as shown in the accompanying diagram. This is possible in chassis types DX-Q, DX-QZ, 34-00, $36-00,34-40,34-50,36-50,36-70$ and $40-00$.


Resistor type changes are as follows:-

| R326 | 100 K | 1 W | IRC only | AWA Code | 616036 |  |  |
| :--- | ---: | :--- | :---: | :---: | :---: | :---: | :---: |
| R329 | 1 M | 1 W | $"$ | $"$ | $"$ | $"$ | 618037 |
| R337 | 1 M | $1 W$ | $"$ | $"$ | $"$ | $"$ | 618037 |
| R340 | 1 M | $1 W$ |  | Morganite or Ducon only AWA Code 618036 |  |  |  |
| R412 | 680 K | $1 W$ | IRC on1y | AWA Code 617676 |  |  |  |

To adjust linearity with this circuit reduc top and bottom of the picture can be seen. A. linearity controls and then return height to


[^0]:    *Less than 1 ohm.

