A.W.A. RADIOLA Television Receiver Chassis 36 Series

ISSUED BY AMALGAMATED WIRELESS (AUSTRALASIA) LTD.
CHASSIS DESIGNATION

Chassis No.	Model	Kinescope	Tuner
$36-01$	No. 6, No. 7	$23 M P 4$	44000 (TA1)
$36-02$	D62	23 CP4	43981 (MF1)
$36-03$	D60Y	23 CP4	44000 (TA1)
$36-04$	D53X	23 CP4	44000 (TA1)
$36-05$	$6 Z$	$23 M P 4$	44000 (TA1)
$36-06$	$3 W$	$23 C P 4$	44000 (TA1)
$36-07$	$244 P$	19AKP4	43442 (MF1)
$36-08$	$4 X$	$23 C P 4$	44000 (TA1)

GENERAL DESCRIPTION

These chassis are fitted in 19 valve, A.C. operated Television Receivers.
Features of design include: Three stage i.f. amplifier; gated a.g.c.; phase discriminator a.f.c. horizontal system; horizontal and vertical sweep stabilization; 114° deflection; electrostatic dynamic focus; aluminised kinescope; intercarrier f.m. sound system; ratio detector.
ELECTRICALAND MECHANICALSPECIFICATIONS

INTERMEDIATE FREQUENCIES
Video I.F. Carrier Frequency $36.875 \mathrm{Mc} / \mathrm{s}$ Sound I.F. Carrier Frequency $31.375 \mathrm{Mc} / \mathrm{s}$

POWER CONSUMPTION: 170 watts maximum.

UNDISTORTED AUDIO POWER OUTPUT: 2.5 watts max.

VIDEO RESPONSE
To $4.25 \mathrm{Mc} / \mathrm{s}$
focus \qquad Electrostatic (Low Voltage)

DEFLECTION 114° Magnetic

TUNER See table above

VALVE COMPLEMENT:

1 (VI) Radiotron 6ES8 R.F. Amplifier		
2	(V2)	Radiotron 6EA8 (MF1) R.F. Osc. \& Conv.
	(V2)	
(Valves 1 and 2 in Tuner)		
	(V101)	Radiotron 6AU6 Sound I.F.
	(V102)	Radiotron 6AL5 Ratio Detector
	(V103)	Radiotron 6AV6 Audio Amp. \& A.G.C. Clamp
6	(V104)	Radiotron 6AQ5 Audio Output
7	(V201)	Radiotron 6BZ6 1st Video I.F.
8	(V202)	Radiotron 6CB6 2nd Video
9	(V203)	Radiotron 6CB6 3rd Video I.F
10	(V204)	Radiotron 6EB8 .. Video Amp. \& Sync. Amp.
	(V205)	Radiotron 6CG7 Video Control and Vert. Osc.
12	66)	Radiotron 23CP4, 23MP4 or 19AKP4 Kinescope
	(V301)	Radiotron 6HS8 Noise Gated A.G.C. \& Sync. Sep.
	(V302)	Radiotron 6EM5 Vertical Output
	(V401)	Radiotron 6AL5 Phase Discriminator
	(V402)	Radiotron 6CG7 Buffer and Horizontal Oscillator
	(V403)	Radiotron 6CM5 Horizontal Output
	(V404)	Radiotron 6AU4-GTA Damper
19	(V405)	Radiotron 1B3-GT High Voltage Rectifier
	MR201	880, OA90, etc. Video Detector
	MR	N1763 or 1N3194 Rectifier
		3 or $1 \times$

1 (V1) Radiotron 6ES8 R. R.F. Amplifier (V2) Radiotron 6HG8 (TA1) R. R.F. Osc. \& Conv. (Valves 1 and 2 in Tuner)
3 (V101) Radiotron 6AU6 Sound I.F.
4 (V102) Radiotron 6AL5 Ratio Detector
5 (V103) Radiotron 6AV6 Audio Amp. \& A.G.C. Clamp
6 (V104) Radiotron 6AQ5 Audio Output
7 (V201) Radiotron 6BZ6 1st Video I.F.
8 (V202) Radiotron 6CB6 2nd Video I.F.
(V203) Radiotron 6CB6 3rd Video I.F.
10 (V204) Radiotron 6EB8 .. Video Amp. \& Sync. Amp.
11 (V205) Radiotron 6CG7 Video Control and Vert. Osc.
2 (V206) Radiotron 23CP4, 23MP4 or 19AKP4 Kinescope
13 (V301) Radiotron 6HS8 Noise Gated A.G.C. \& Sync. Sep.
14 (V302) Radiotron 6EM5 Vertical Output
15 (V401) Radiotron 6AL5 Phase Discriminator
16 (V402) Radiotron 6CG7 Buffer and Horizontal Oscillator
17 (V403) Radiotron 6CM5 Horizontal Output
18 (V404) Radiotron 6AU4-GTA Damper
19 (V405) Radiotron 1B3-GT High Voltage Rectifier MR201 OA80, OA90, etc. Video Detector MR401 1N1763 or 1N3194 Rectifier MR402 IN1763 or IN3194 Rectifier

HIGH VOLTAGE WARNING

Operation of this receiver outside the cabinet involves a shock hazard from the receiver power supplies. Work on the receiver should not be attempted by anyone who is not thoroughly familiar with the precautions necessary when working on high voltage equip. ment. Do not operate the receiver with the high voltage compartment shield removed. Make sure that the earth strap between the chassis and the kinescope assembly is securely fastened before turning the receiver on.

KIRESCOPE HANDLING PRECAUTIONS

Do not install, remove or handle the kinescope in any manner unless shatter-proof goggles are worn. People not so equipped should be kept away while handling kinescopes. Keep the kinescope away from the body while handling.
When the receiver has been switched off after operating for a time, the kinescope will retain a certain charge. Therefore it is advisable to discharge it before handling.

OPERATING TESTS

DEFLECTION YOKE ADJUSTMENT (Fig. 1)

If the lines of the raster are not horizontal or squared with the kinescope, rotate the deflection yoke until this condition is obtained. Tighten the yoke clamp.

FIG. 1
NOTE: Rotational directions specified are viewed from the spindle end or, when no spindle is visible, from the rear cabinet end.

FOCUS ADJUSTMENT

This is a factory adjustment and should not need resetting unless the Kinescope is replaced.
The wander lead is attached in turn to the three taps provided, and then left on the tap giving best overall focus at normal contrast and brightness.

CHECK OF HORIZONTAL OSCILLATOR ADJUSTMENT

Turn the horizontal hold control to the extreme clockwise position. The picture should be out of synchronisation with a minimum of 10 bars slanting downwards towards the left. Turn the control slowly anti-clockwise. The number of diagonal black bars will gradually reduce and when only $1 \frac{1}{2}$ to 3 bars remain, the picture will synchronise with further slight anti-clockwise rotation of the control. The picture should remain synchronised for at least 4 full turns of additional anti-clockwise rotation of the control. Continue to turn the control anti-clockwise until synchronisation is lost. Turning the control beyond this point should produce a minimum of 6 bars before end of rotation or a minimum of 6 bars before interrupted oscillation (motor-boating) occurs.

The hold control should then be turned in a clockwise direction until synchronisation is just obtained. A further rotation of 1 to $1 \frac{1}{2}$ furns is the correct setting.

When the receiver passes the above checks and the picture is normal and stable the horizontal oscillator is correctly aligned and the "Horizontal Oscillator Adjustment" may be by-passed.

HORIZONTAL OSCILLATOR ADJUSTMENT

The adjustment of the horizontal oscillator is not considered to be part of the alignment procedure. The adjustment is made at the factory and should not require readjustment in the field. However, the adjustment should be carried out whenever components in the horizontal oscillator circuit are changed. The width should be correctly set before adjustments are carried out.

The horizontal oscillator may be adjusted by the following method:-

NOTE: Under normal circumstances, únless C408 or L401 are replaced, no sine wave coil adjustment will be required, and the correct horizontal oscillator conditions will be obtained by following step 5 below.

1. Short circuit the sine wave coil, L401, and short circuit the phase discriminator test point to ground.
2. Adjust the horizontal hold control, TR401, until the picture is synchronised with the signal, i.e., picture sides are straight.
3. Remove short circuits from sine wave coil and phase discriminator test point.
4. With a c.r.o. at the horizontal oscillator transformer tap (red colour dot), adjust sine wave, L401, for a waveform as shown.

5. Set the horizontal hold control, TR401, for 0 volts d.c. at the phase discriminator test point.

CENTRING ADJUSTMENT

Centring of the electron beam is important for good linearity, horizontally and vertically. When the linearity has been adjusted as per following instructions, if the horizontal linearity is poor this indicates that the centring magnets require adjustment for horizontal centring. Similarly, if the vertical linearity is poor after adjusting the height and vertical linearity controls, this indicates the need for vertical centring.

Note: The centre of test patterns as transmitted on various channels may vary and should not be relied upon for centring purposes.

The centring magnets are in the form of two discs mounted on the rear of the deflection yoke cap. When the magnets are rotated around the tube neck so that the levers are opposite, minimum centring effect with either lever is produced. To obtain correct centring of the picture the magnets are alternatively rotated with respect to each other.

CAUTION

Under no circumstances should the receiver be switched on wîh the deflection yoke removed from the picture tube. This may produce an undeflected spot which may damage the screen.

WIDTH AND HORIZONTAL LINEARITY ADJUSTMENTS

The width and horizontal linearity controls, RV401 and L403, are adjusted to produce best linearity with a picture of the correct width, i.e., with the picture extending approximately $\frac{1}{2}^{\prime \prime}$ on either side of the kinescope mask with normal picture brightness.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS

Adjust the height control, RV307, for a picture of approximately $\frac{3}{4}$ of the normal size.

Adjust the vertical linearity control, RV305, to give a small amount of cramp at the top of the picture.

Adjust the height and top linearity controls, RV307 and RV306, to obtain a picture of normal height (approximately $\frac{1}{2}^{\prime \prime}$ of picture extending beyond the top and bottom of the kinescope mask).

Finally adjust the height, top linearity and vertical linearity controls for best linearity and correct height.

A.G.C. ADJUSTMENT

This adjustment to be made only after all other adjustments have been checked.

Set the min. contrast and I.F. A.G.C. controls, RV302 and RV301, at their mid-positions.

Tune the receiver to a channel of medium strength (1 mV) or suitable attenuated strong signal.

Set the contrast control, RV201, to minimum (fully anticlockwise).

Adjust the min. contrast control to give 15 volts p-p at the kinescope cathode.

Adjust contrast control to increase this to 20 volts p-p.
Adjust the I.F. A.G.C. for snow threshold. A clockwise rotation increases snow.

REPLACEMENT OF FUSES

Two 1.5 amp. fuses are provided for mains and high tension protection. The location and function of these fuses are indicated on the layout diagram.

testing instruments

To properly service the television receiver it is recommended that the following testing equipment be available-
(1) Television Sweep Generator.
(2) A.W.A. Cathode Ray Oscilloscope (C.R.O.), type 1A56069.
(3) A.W.A. Television Calibrator, type A56057.
(4) A.W.A. Voltohmyst, type 1 A56074.
(5) A.W.A. Universal Measuring Bridge, type A56048.

testing pads and circuits

(Referred to in Alignment Procedure.)

FIG. 2-CRYSTAL DETECTOR PROBE

FIG. 3

RESPONSE CURVES

The response curves referred to throughout the alignment procedure were taken from a production set, but some variations can be expected.

CRITICAL LEAD DRESS

All leads in the i.f. section, particularly those on by-pass capacitors, must be kept as short as possible.

Wire wound resistors should be dressed away from neighbouring components.

NOTE: When two positions of the core appear to give the correct adjustments, the following apply:-

* Coil tuned with core close to chassis.
\dagger Coil tuned with core close to can top, i.e., remote from chassis.

Make sure that bias voltages are correct, as incorrect voltages will lead to wrong adjustment.

When applying markers use smallest marker visible, otherwise response could be incorrectly displayed, i.e., removal of the marker generator should not change viewed shape of response.

Make sure that responses are viewed at correct output level as incorrect level will result in wrong adjustment. At lower levels detector non-linearity affects the shape, and at higher levels overload will alter the shape of the response.

SOUND I.F. ALIGNMENT

Connect the output of the television calibrator to the video detector test point and set the frequency to $5.5 \mathrm{Mc} / \mathrm{s}$.

Connect the Voltohmyst d.c. probe to the sound peak test point and set the range switch to +5 volts d.c.

Short circuit pin 1 of V203 (3rd video i.f. grid) to ground.
Adjust the following cores for peak output varying the input to maintain a reading of about 2 volts.

TR101 secondary (ratio detector bottom core)*.
TR101 primary (top core) \dagger.
L101 (sound take off coil)*.
L206 (sound trap)*.
Repeat this sequence once.
Transfer the Voltohmyst probe to the sound zero test point.
Re-adjust TR101 secondary (bottom core) for zero reading on the Voltohmyst.

Set the calibrator modulation switch to $600 \mathrm{c} / \mathrm{s}$.
Connect the c.r.o. to the video out test point through a crystal probe (Voltohmyst probe 2 R56075 is suitable).

Re-adjust L206 (sound trap)* for minimum $600 \mathrm{c} / \mathrm{s}$ on the c.r.o.

Remove television calibrator, Voltohmyst and short circuit on V203 grid.

VIDEO I.F. ALIGNMENT

Turn RV301 to its extreme clockwise position when viewed from the wiring side and connect the junction of R301 and R303 to earth.

Connect a source of -3 volts bias to the video i.f. at the i.f. a.g.c. test point and a source of -2.5 volts bias to the tuner a.g.c. terminal.

Connect the sweep generator to the aerial input terminals on the tuner and set both sweep generator and tuner to Channel 6.

Connect the c.r.o. vertical input to TP1 on the tuner through a shielded lead.

Check that the r.f. response viewed on the c.r.o. conforms with that shown in figure 6.

Note: In figure 5 is shown a suggested input pad and a way the marker generator can be connected for checking the tuner response.

FIG. 6

Disconnect the c.r.o. from TP1 on the tuner and connect the crystal detector probe (figure 2) to pin 5 of V 201 (1st video i.f. plate) and also by-pass pin 5 of V202 using by-pass lead provided.

Set tuner oscillator frequency to $212.125 \mathrm{Mc} / \mathrm{s} \pm 0.5 \mathrm{Mc} / \mathrm{s}$ using the fine tuning control. Set the sweep generator output to give maximum deflection on the c.r.o. of 0.3 volts p-p. It is suggested that the marker generator be connected to the centre spigot on the socket of V201 and the earth lead connected to the chassis.

Set the marker generator to $38.375 \mathrm{Mc} / \mathrm{s}$ and adjust $\mathrm{L} 201 \dagger$ so that the marker appears in the dip of the response produced by the trap, i.e., tune the trap to $38.375 \mathrm{Mc} / \mathrm{s}$.

Adjust TR2,† L202* and trimmer C204 to produce the response on the c.r.o. shown in figure 7.

FIG. 7
TR2† mainly affects $36.875 \mathrm{Mc} / \mathrm{s}$ marker position.
L202* mainly affects tilt.
C204 mainly affects the band width.

OVERALL ALIGNMENT

Remove the crystal probe and connect the c.r.o. to the video detector test point using the network shown in figure 3. It is suggested that the marker generator remain connected to the centre spigot of V201 socket.

View overall response with approximately 3 volts p-p output and adjust the accompanying sound trap TR202 (top core) \dagger for minimum response at $30.875 \mathrm{Mc} / \mathrm{s}$ increasing the c.r.o. gain if necessary for easier adjustment of the trap.

Reset the c.r.o. gain to give 3 volts p-p and adjust for a response as shown in figure 8.

Marker $36.875 \mathrm{Mc} / \mathrm{s}$ at 30% TR202*.
Marker $31.375 \mathrm{Mc} / \mathrm{s}$ at $4 \%-6 \%$ TR201*.
No tilt TR203*.
Check that $32.625 \mathrm{Mc} / \mathrm{s}$ marker is at $50 \%-65 \%$, otherwise re-adjust TR201* and correct tilt with TR203* if necessary.

Code No.	description			Part No.	Code N		CRIPTION		Part No.
RESISTORS					RESISTORS (Continued)				
All Resistors carbon unless otherwise stated.					R311 Not Us				
R101	Not Used				R312	1 Megohm	$\pm 10 \%$	$\frac{1}{2}$ watt	618016
R102	220 ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	605253	R313	680K ohms	$\pm 10 \%$	1 watt	617669
R103	Not Used				R314	1.8 Megohms	$\pm 10 \%$	$\frac{1}{2}$ watt	618362
R104	33K ohms	$\pm 10 \%$	2 watts	614465	R315	1 Megohm	$\pm 10 \%$	1 watt	618021
R105	47 ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	603091	R316	100K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	616017
R106	47K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	614961	R317	1 Megohm	$\pm 10 \%$	1 watt	618021
R107	4.7K ohms	$\pm 5 \%$	$\frac{1}{2}$ watt	610964	R318	120K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	616261
R108	4.7 K ohms	$\pm 5 \%$	$\frac{1}{2}$ watt	610964	R319	Not Used			
R109	10 Megohms	$\pm 10 \%$	$\frac{1}{2}$ watt	619406	R320	10K ohms	$\pm 10 \%$	2 watts	612022
R110	330 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	617108	R321	Not Used		2 wars	
R111 R112	Not Used 470K ohms				R322	10K ohms	$\pm 10 \%$	2 watts	612022
R112 R113	470K ohms Not Used	$\pm 10 \%$	$\frac{1}{2}$ watt	617356	R323	27 K ohms	$\pm 10 \%$	1 watt	614142
R113 R114	Not Used				R324	6.8 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	611526
R115	270 ohms	$\pm 10 \%$	1 watt	605645	R325	1.2 Megohms	$\pm 10 \%$	1 watt	618146
R116	680 ohms	$\pm 10 \%$	5 watts W.W.	607290	R326	100K ohms	$\pm 10 \%$	1 watt	616020
R201	1 K ohms	$\pm 20 \%$	$\frac{1}{2}$ watt	608030	R327	10 Megohms	$\pm 10 \%$	1 watt	619410
R202	2.2 K ohms	$\pm 5 \%$	$\frac{1}{2}$ watt	609444	R328	220 K ohms	$\pm 20 \%$	$\frac{1}{2}$ watt	616725
R203	47 ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	603091	R329	1 Megohm	$\pm 10 \%$	1 watt	618021
R204	8.2 K ohms	$\pm 5 \%$	$\frac{1}{2}$ watt	611847	R330	4.7K ohms	$\pm 10 \%$	1 watt	610966
R205	470 ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	606588	R331	Not Used			
R206	120K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	616261	R332	1 Megohm	$\pm 10 \%$	$\frac{1}{2}$ watt	618016
R207	15 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	612922	R333	330 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	617108
R208	39 ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	602914	R334	47K ohms	$\pm 10 \%$	1 watt (BTAV)	614974
R209	150K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	616426	R335	820 K ohms	$\pm 10 \%$	1 watt (BTAV)	617848
R210	8.2 K ohms	$\pm 5 \%$	$\frac{1}{2}$ watt	611847	R336	820 K ohms	$\pm 10 \%$	1 watt (BTAV)	617848
R211	Not Used				R337	1.5 Megohms	$\pm 10 \%$	1 watt	618263
R212	1.5 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	608705	R338	1.2 Megohms	$\pm 10 \%$	$\frac{1}{2}$ watt	618141
R213	150 ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	604677	R339	47K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	614961
R214	39 K ohms	$\pm 10 \%$	1 watt	614691	R340	1 Megohm	$\pm 10 \%$	1 watt	618021
R215	3.3 K ohms	$\pm 10 \%$	1 watt	610309	R341	Not Used			
R216	33 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	614460	R342	680 ohms	$\pm 10 \%$	5 watt W.W.	607290
R217	3.9 K ohms	$\pm 5 \%$	$\frac{1}{2}$ watt	610560	R343	10K ohms	$\pm 10 \%$	2 watts	612022
R218	68 ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	603560	R344	12K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	612507
R219	22 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	613653	R345	330K ohms	$\pm 10 \%$	1 watt	617111
R220	47K ohms	$\pm 10 \%$	1 watt	614969	R346	100K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	616017
R221	Not Used				R347	1.2 Megohms	$\pm 10 \%$	1 watt	618146
R222	Not Used				R348	1 Megohm	$\pm 10 \%$	1 watt (BTAV)	618026
R223	5.6K ohms	$\pm 5 \%$	7 watts W.W.	611300	R349	100 K ohms	$\pm 10 \%$	1 watt	616020
R224	Not Used				R401	1 Megohm	$\pm 10 \%$	$\frac{1}{2}$ watt	618016
R225	390 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	617204	R402	33 K ohms	$\pm 10 \%$	2 watts	614465
R226	180K ohms	$\pm 5 \%$	1 watt	616561	R403	1 Megohm	$\pm 10 \%$	$\frac{1}{2}$ watt	618016
R227	150K ohms	$\pm 5 \%$	1 watt	616434	R404	82K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	615795
R228	100K ohms	$\pm 5 \%$	1 watt	616024	405	68 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	615494
R229	3.3 Megohms	$\pm 10 \%$	$\frac{1}{2}$ watt	618712	R407	2.2 K ohms 220 K ohms	$\pm 10 \%$ $\pm 10 \%$	$\frac{1}{2}$ watt 1 watt	609442
R230	Not Used				R408	39 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	614684
R231	120 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	616261	R409	100K ohms	$\pm 10 \%$	1 watt	616020
R301	470 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	617356	R410	47 ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	603091
R302	4.7 Megohms	$\pm 10 \%$	1 watt	618941	R411	Not Used	-10\%		
R303	680 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	617666	R412	680K ohms	$\pm 10 \%$	1 watt	617669
R304	33 K ohms	$\pm 10 \%$	$\frac{1}{2}$ watt	614460	R413	27 K ohms	$\pm 10 \%$	1 watt	614142
R305	150K ohms	$\pm 10 \%$	1 watt	616430	R414	820 K ohms	$\pm 10 \%$	1 watt (BTAV)	617848
R306	Not Used	$\pm 10 \%$	1 watt	612033	R415	3.9 K ohms	$\pm 10 \%$	5 watts W.W.	610567
R308	$2 \times 47 \mathrm{~K}$ ohms	$\pm 10 \%$	1 watt	614969	R416	1 Megohm	$\pm 10 \%$	1 watt (BTAV)	618026
R309	8.2 K ohms	$\pm 10 \%$	1 watt	611849	R417	22 K ohms	$\pm 10 \%$	1 watt	613658
R310	470 K ohms	$\pm 10 \%$	1 watt	617359	R418	1.5 ohms	$\pm 10 \%$	$\frac{1}{2}$ watt W.W.	600416

CIRCUIT CODE

CIRCUIT CODE

Code No.	DESCRIPTION	Part No.	Code No.	description	Part No.
CAPACITORS (Continued)			Valves and diodes		
C403	$0.0015 \mu \mathrm{f} \pm 10 \% 400 \mathrm{VW}$ polyester	225390	V101	Radiotron 6AU6	
C404	$390 \mathrm{pf} \pm 5 \% 600 \mathrm{VW}$ styroseal	223885	V102	Radiotron 6AL5	
C405	$0.047 \mu \mathrm{f} \pm 10 \% 125 \mathrm{VW}$ polyester	226804	V103	Radiotron 6AV6	
C406	$470 \mathrm{pf} \pm 10 \% 600 \mathrm{VW}$ polystyrene	224207	V104	Radiotron 6AQ5	
C407	$270 \mathrm{pf} \pm 5 \%$ 1000VW mica	223553	V201	Radiotron 6BZ6	
C408	$0.01 \mu \mathrm{f} \pm 5 \% 600 \mathrm{VW}$ styroseal	226335	V202	Radiotron 6CB6	
C409	Not Used		V203	Radiotron 6CB6	
C410	$0.0012 \mu \mathrm{f} \pm 5 \%$ 1000VW mica	225307	V204	Radiotron 6EB8	
R411	Not Used		V205	Radiotron 6CG7	
C412	2.2pf $\pm .5 \mathrm{pf} \mathrm{NPO} \mathrm{disc}$	221494	V206	Radiotron 23CP4, 23MP4 or 19AKP4 (see	models)
C413	$0.0012 \mu \mathrm{f} \pm 10 \% 600 \mathrm{VW}$ styroseal	225303	V301	Radiotron 6HS8	
C414	$0.01 \mu \mathrm{f}+100 \%-0 \% \mathrm{~K} 5000$ disc	226307	V302	Radiotron 6EM5	
C415	$2 \mu \mathrm{f} 300 \mathrm{VW}$ Electrolytic	227923	V402	Radiotron 6AL5 Radioíron 6CG7	
C416	$0.047 \mu \mathrm{f} \pm 10 \%$ 1000VW paper	226831	V403	Radiotron 6CM5	
C417	$0.047 \mu \mathrm{f} \pm 10 \% 1000 \mathrm{VW}$ paper	226831	V404	Radiotron 6AU4-GTA	
C418	$68 \mathrm{pf} \pm 10 \% 400 \mathrm{VW}$ N750 disc	221965	V405	Radiotron IB3-GT	
C419	$560 \mathrm{pf} \pm 10 \% 2500 \mathrm{VW}$ N1500 tubular	224484	MR201	OA80, OA90 or equivalent	
C420	$270 \mathrm{pf} \pm 10 \% 2500 \mathrm{VW}$ N750 disc	223554	MR401	AWV IN1763 or IN3194	
C421	$0.12 \mu \mathrm{f} \pm 10 \% 400 \mathrm{VW}$ paper	227250	MR402	AWV IN1763 or IN3194	

miscellaneous

C423 $\quad 0.001 \mu \mathrm{f}+100 \%-0 \%$ K5000 tubular 225010
C424 . Not Used
C425 270pf $\pm 10 \%$ 2500VW N750 disc 223554
C426 100 1 f 200VW Electrolytic 229711
C427 100 $\mu \mathrm{f}$ 200VW Electrolytic 229711
C428 100 $\mu \mathrm{f} 350 \mathrm{VW}$ Electrolytic 229727

INDUCTORS		
L101	Sound I.F.	43336
L201	38.375 Mc/s Trap $\}$	
L202	I.F. Input $\}$	43580
L203	Detector Filter	40323
L204	Detector Filter	49671
L205	Detector Peaking Coil ($250 \mu \mathrm{H}$)	40117
L206	$5.5 \mathrm{Mc} / \mathrm{s}$ Trap	43593
1207	Video Amp. Series Peaking Coil	51693
1401	Sine Wave	52150
1402	H.F. Choke ($1.5 \mu \mathrm{H}$)	214516
1403	Horizontal Linearity	43264
L404-L407	7 Yoke (when chassis behind kine.)	43660
	Yoke (when chassis under kine.)	43661
1408	H.T. Filter Choke	40113C

TRANSFORMERS

TR101	Ratio Detector	40077		
TR102	Speaker Transformer	51862 A		
TR201	1st Video I.F.	40902		
TR202	2nd Video I.F.	41407		
TR203	3rd Video I.F.	41933		
TR301	Vertical Blocking Oscillator	43643 A		
TR302	Vertical Output	43340 A		
TR401	Horizontal Blocking Oscillator	51694		
TR402	Horizontal Output	43646		
TR403	Not Used			
TR404	Power Transformer 36-01, 02, 03, 04, 06, 08	43261 C		
	$36-07$			43261 D
	$36-05$	51839		

D.C. RESISTANCE OF WINDINGS

	WINDING	D.C. RESISTANCE IN OHMS	WINDING		D.C. RESISTANCE IN OHMS
Tuner	Windings	*	TR201	1st Video I.F.	
L101	Sound I.F.	1.3	Primary 1-2		*
			Secondary 3-4		*
1201	38.375 Mc/s Trap	*			
			TR202	2nd Video I.F.	
L202	Video I.F.	*		Primary 1-4	*
L203	Detector Filter Choke	4		Secondary	*
L204	Detector Filter Choke	*	TR203	3rd Video I.F.	
L205	Detector Peaking Coil	6		Primary	*
				Secondary	*
L206	5.5 Mc/s Trap	1.5			
L207	Video Amp. Series Peaking	5	TR301	Vertical Oscillator Transformer	
				Primary Bu-Gn	525
1401	Sine Wave Coil	55		Secondary Ye-Bk	140
L402	H.F. Choke	*	TR302	Vertical Output Transformer	
$\llcorner 403$	Horizontal Linearity Coil	7		Primary Bu-Rd	350
				Secondary Rd-Ye	1
1404	Deflection Yoke	2.5			
			TR401	Horizontal Oscillator Transformer	
1405	Deflection Yoke	2.5		Primary Rd-Anode	
1406	Deflection Yoke	17		Secondary Rd-C407	88
1407	Deflection Yoke	17	TR402	Horizontal Output Transformer	
1408	H.T. Filter Choke	40		Primary 3-5	23
				Secondary 4-7	7
TR101	Ratio Detector			Tertiary 5-Top Cap	415
	Primary	9.5		Tertiary 1-2	1.5
	Secondary	1	TR404	Power Transformer	
TR102	Speaker Transformer			Primary Gn-Wh	10
	Primary	500		Secondary Rd-Rd	4
	Secondary	2		Motor Winding	2

[^0]The above readings were taken on a standard chassis, but substitution of materials during manufacture may cause variations, and it should not be assumed that a component is faulty if a slightly different reading is obtained.

Under Chassis Location Chart

Top Chassis Location Chart

CIRCUIT TELEVISION RECEIVER CHASSIS - 36 SERIES

CIRCUIT CHANGES

To improve synchronisation at minimum contrast setting:-
The value of C312 which was a $0.033 \mu \mathrm{f} \pm 10 \% 600 \mathrm{VW}$ paper capacitor 226731, is now 0.01 رf
R316 was omitted on some chassis.
To increase the vertical hold control range with all contrast control settings:The value of R313 which was a 220 K ohms $\pm 10 \% \frac{1}{2}$ watt resistor, 616721,
is now 680 K ohms.
The value of R 324 which was a 2.7 K ohms $\pm 10 \% \frac{1}{\frac{1}{2}}$ watt resistor, 609862 ,
is now 6.8 K ohms.
To improve audio output on strong signals:-
The value of R104 which was a 39 K ohms $\pm 10 \% 2$ watts resistor, 614465 ,
is now 33 K ohms.

Power Input
Circuit with
51839 Transformer
(36.05 chassis)

[^0]: * Less than I ohm.

