HIS MASTER'S VOICE Cl3D, U63A, U63B TECHNICAL SPECIFICATION

POWER SUPPLY: 200 to 250 volts, 40 to 50 c.p.s.

CONSUMPTION:
36 watts.
FREQUENGY RANGE:
$540 \mathrm{Kc} / \mathrm{s}$ to $1600 \mathrm{Kc} / \mathrm{s}$.
$5.9 \mathrm{Mc} / \mathrm{s}$ to $18.25 \mathrm{Mc} / \mathrm{s}$.
I.F. FREQUENCY:
$457.5 \mathrm{Kc} / \mathrm{s}$.
VALVE COMPLEMENT:
6BE6 Frequency Changer.
6BA6 I.F. Amplifier
6AV6 A.V.C.-Demod.-Audio Amp.
6M5 Power.
6X4 Rectifier.

DIAL LAMPS:
6.3 volt, 0.15 to 0.3 amp .

LOUDSPEAKER:
Permagnetic type. Voice coil impedance at 400 cycles $=4$ ohms.
DIMENSIONS:
Packed-

Width	$14 \frac{1}{2}$ in.
Height	
Depth	
packed-	
Width	
Height	$8 \frac{7}{8}$
Depth	$6 \frac{1}{4} \mathrm{in}$.

WEIGHT:
Receiver packed 12 lbs.
Receiver only $9 \frac{1}{2}$ lbs.

CIRCUIT DESCRIPTION

This model incorporates a 5 -valve A.C. mains-operated superheterodyne receiver for medium-wave and short-wave reception, and incorporates pick-up terminals for record player reproduction.

FREQUENGY CHANGER

The aerial, on the broadcast band, is coupled to the signal frequency circuit by means of the iron-dust cored aerial transformer, L1-L2. For short-wave reception, the short-wave aerial transformer, L3-L4, is switched into circuit.

The frequency changer valve is used as a pentagrid converter with a self-excited oscillator circuit.

Fixed padding capacities are used on both bands. On the short-wave the padding capacitor is switched in the aerial circuit, whilst on mediumwave padding is provided in the oscillator circuit with variable padding provided by an iron-dust bolt in coil L5.

I.F. AMPLIFIER

The frequency changer valve is transformercoupled to a remote cut-off pentode V2. This valve is, in turn, transformer-coupled to the demodulator diode section of the duo-diode triode valve V3. Both I.F. transformers have fixed tuning capacitors, and permeability tuning is provided by means of iron-dust tuning bolts.
DEMODULATOR, A.V.G. AND

A.F. AMPLIFIER

Simple A.V.C. is used to obtain A.V.C. potentials for the frequency changer and I.F. amplifier.

The demodulated signal across the diode load VR1 is applied to the grid of the triode section of V3.

The audio amplifier is resistance capacity coupled to the grid of the power output valve V4.

Switching is provided for earthing the diode and A.V.C. line and for switching the P.U. terminals across the volume control.

AUDIO OUTPUT AMPLIFIER

The power pentode output valve V4 is trans-former-coupled to the loudspeaker. Inverse feedback is provided by feeding voltage from the voice coil via C 22 to the cathode of the 6 M 5 output valve.

H.T. SUPPLY

The power supply employs an indirectly heated type high-vacuum valve V5 as a full wave rectifier. Unfiltered high tension voltage is fed to the power output valve plate circuit, whilst the remaining receiver circuits are supplied with H.T. through a resistance capacity filter.

MAINS VOLTAGE ADJUSTMENTS

Before leaving our Works, all receivers of this model are connected for operation on mains voltages of between 226 and 250 volts. A mains voltage panel is provided inside the chassis with tags marked 210 and 240. Should it be required to operate this receiver on a lower mains voltage of between 200 and 225, the lead must be removed from the tag marked 240 and connected to the tag marked 210. Provision is made on the mains voltage panel for connection of mains transformer primary tappings to suit the appropriate mains voltage.

HIS MASTER'S VOICE Cl3D, U63A, U63B

HIS MASTER'S VOICE C13D, U63A, U63B

RESISTORS

R1 0.1 megohm $\pm 10 \% \frac{1}{2}$ watt
R2 $25 \mathrm{ohms} \pm 10 \% \frac{1}{2}$ watt
R3 20,000 ohms $\pm 10 \% \frac{1}{2}$ watt
R4 2 megohms $\pm 10 \% \frac{1}{2}$ watt
R5 250 ohms $\pm 10 \% \frac{1}{2}$ watt
R6 10,000 ohms $\pm 10 \% 1$ watt
R7 50,000 ohms $\pm 10 \% \frac{1}{2}$ watt
R8 10 megohms $\pm 10 \% 1$ watt
R9 0.25 megohm $\pm 10 \%$, $\frac{1}{2}$ watt
R10 50,000 ohms $\pm 10 \% \frac{1}{2}$ watt
R11 10,000 ohms $\pm 10 \% 1$ watt
R12 10,000 ohms $\pm 10 \% 1$ watt
R13 200 ohms $\pm 10 \% 1$ watt

CONDENSERS

C 1	$100 \mathrm{pF} . \pm 10 \%$
C 2	$3 \mathrm{pF} . \pm 10 \%$
C 3	$.004 \mathrm{mF} . \pm 100 \mathrm{pF}$
C 4	$.05 \mathrm{mF} . \pm 20 \%$
	$200 \mathrm{~V} . \mathrm{wkg}$.
C 5	$50 \mathrm{pF} . \pm 10 \% \%$
C 6	$425 \mathrm{pF} . \pm 5 \mathrm{pF}$.

C7 $\quad .05 \mathrm{mF} . \pm 20 \%$ 400 V . wkg.
C8 $\quad 100 \mathrm{pF} . \pm 5 \%$
C9 $\quad 100 \mathrm{pF} . \pm 5 \%$
$\mathrm{C} 10 \quad 10 \mathrm{pF} . \pm 10 \%$
$\mathrm{C} 11 \quad .02 \mathrm{mF} . \pm 20 \%$ 400 V . wkg.
$\mathrm{C} 12.1 \mathrm{mF} . \pm 20 \%$
200V. wkg.
C13 100 pF. $\pm 5 \%$
C14 $.05 \mathrm{mF} . \pm 20 \%$
400 V . wkg.
C15 $100 \mathrm{pF} . \pm 5 \%$
C16 $100 \mathrm{pF} . \pm 10 \%$
C17 $100 \mathrm{pF} . \pm 10 \%$
$\mathrm{C} 18 \quad .01 \mathrm{mF} . \pm 20 \%$ 600 V . wkg.
C19 24 mF. 350 P.V.
C20 $.02 \mathrm{mF} . \pm 20 \%$ 400 V . wkg. $.005 \mathrm{mF} . \pm 20 \%$ 600 V . wkg.
C22 25 mF .40 P.V.
C23 24 mF .350 P.V.

MISCELLANEOUS

T1 Transformer, Mains
T2 Transformer, Output VC1-

VC2 Condenser, 2-Gang VR1/S1 Potentiometer, $\frac{1}{2}$ meg. with 2-pole switch
L3-L4 Coil, Medium Wave Aerial
L. 5 Goil, Medium Wave Oscillator
Condenser, Trimmer Aerial-S.W. \& M.W.
Condenser, Trimmer Os-cillator-SW \& MW
Transformer, 1st I.F.
Transformer, 2nd I.F.
5" x 7" Permagnetic Elliptical Speaker; or
Spkr. 5" Permagnetic Speaker with
Baffle Adaptor

