INSTRUMENT HANDBOOK
 ISSUE 1 (246)

Applicable to Serial No. A.4.!...S.

MODEL bwd 503

5" SINGLE BEAM OSCILLOSCOPE

SECTION	PAGE	CONTENTS
1	1	INTRODUCTION
2	2	SPECIFICATION
3	2	FUNCTION OF CONTROLS
4	4	FIRST TIME OPERATION
5	5	MEASUREMENT OF DC VOLTAGES
6	6	MEASUREMENT OF AC VOLTAGES
7-8	6	TIME \& FREQUENCY MEASUREMENT
9	6	MEASUREMENTS WITH EXT. HORZ. INPUT
10	7	CIRCUIT DESCRIPTION
11	10	ALIGNMENT \& MAINTENANCE
12	12	REPLACEMENT PARTS
13	12	WARRANTY
15	1A-6A	PARTS LIST
16		CIRCUIT DIAGRAM
17	1C-4C	
		METHOD OF SPECIFYING BWD
		OSCILLOSCOPES

B. W. D. ELECTRONICS PTY.LTD. 331-333 BURKE ROAD, GARDINER VICTORIA 3146 AUSTRALIA

Telephone: 254425
B.W.D. ELECTRONICS PTY. LTD. 127 BLUES POINT ROAD, NORTH SYDNEY NEW SOUTH WALES 2060 AUSTRALIA

Telephone: 9297452

MODEL bwd 503

1. GENERAL

Model bwd 503 Oscilloscope is a versatile instrument designed for absolute simplicity of operation and reliable long life. Special attention has been paid to isolating the complete circuitry so that it is practically impossible to damage either the Oscilloscope or equipment connected to it by incorrect connection. The external cabinet is grounded to the mains earth for complete safety.
1.1 Both Vertical and Horizontal Amplifiers are D. C. coupled enabling the Oscilloscope to be used as an A.C. or D.C. volt or milli-voltmeter, D. C. plotting table, LF phase comparator. Additionally, with suitable resistor across the input (e.g. 1Ω), it will operate as a direct reading ammeter or milli-ammeter, in addition to all normal Oscilloscope functions.
1.2 The Time Base as a 100,000 to 1 frequency range of $1.0 \mu \mathrm{Sec} / \mathrm{cm}$ down to $0.1 \mathrm{Sec} / \mathrm{cm}$, and incorporates completely Automatic Triggering. The stability control has been completely eliminated, the new solid state trigger circuit being self setting, and always ready to receive any input signal.
1.3 When used with Model bwd 112B or 141 Oscillators, measurement and display of the complete audio spectrum can be made, and in conjunction with the unique Model bwd 603 Generator/Power Supplies Combination, a complete demonstration in the field of physics is open from basic magnetism and electricity, right through to R.F. transmission and reception, modulation, voltage and power amplification, phase relationships etc. (Request Data Sheet 600 and leaflets for further information).
2. SPECIFICATION
2.1 C.R.T. TYPE

Phosphor
E.H.T.

Graticule

2.2 VERTICAL AMPLIFIER

Bandwidth

Sensitivity

5" flat faced, 5UPI - F.
PI normally supplied; P7 available to special order.
1.5 KV .

Fitted with $8 \times 10 \mathrm{~cm}$. graticule and blue light filter (orange filter for P7 Phosphor).
D. C. or 2 Hz (A.C. coupled) to 3 MHz , -3 db at all sensitivities. Referred to 4 cm . at 50 kHz .
$20,50,100,200,500 \mathrm{mV}, 1,2,5,10,20,50$ and 100 V per cm .

2. SPECIFICATION (Cont'd.)

2.2 VERTICAL AMPLIFIER

Rise Time < 100 nano Seconds constant.

Calibration
Input Impedance
Max. Input Voltage
500 V D.C. or 250 V A.C. Better than 10%.
$1 \mathrm{M} \Omega$ and less than 40 pf .

2.3 TIME BASE

Range

Switch Calibration

Blanking
$1 \mu \mathrm{Sec} / \mathrm{cm}$ to $0.1 \mathrm{Sec} / \mathrm{cm}$ in 5 decade ranges with VERNIER control.

Better than 10% with VERNIER in CAL position.
A.C. coupled to C.R.T. grid.
2.4 TRIGGER

Facilities
Sensitivity

Switch selection + or - (Internal)
20 Hz to over 1 MHz with $<2 \mathrm{~cm}$ deflection 5 Hz to $>3 \mathrm{MHz}$ with $<4 \mathrm{~cm}$ deflection.

2.5 HORIZONTAL AMPLIFIER

Bandwidth
Sensitivity

Input Impedance
D.C. to $100 \mathrm{kHz}-(-3 \mathrm{db})$.

Range greater than 600 mV to 6.5 V per cm . Continuously variable.
100 K and 30 pf approximately.
2.6 Deleted.
2.7 POWER REQUIREMENTS
$\left.\begin{array}{c}190 \text { to } 260 \mathrm{~V} \\ 95 \text { to } 130\end{array}\right) 50$ to 60 Hz . , approximately 25 watts.

2.8 DIMENSIONS \& WEIGHT

$24 \times 19 \times 42 \mathrm{~cm}$ deep. Weight approximately 7 kg .8 .5 kg packed.
2.9 ACCESSORIES Supplied with Instrument -

1 Handbook
1 Power Cord.
2. SPECIFICATION (Cont'd.)

2.10 OPTIONAL ACCESSORIES

See Catalogue.
3. FUNCTION OF CONTROLS

Front panel controls are grouped for ease of use and are clearly designated. The functions of these controls are described below.

3.1 INTENSITY CONTROLS \& ON-OFF SWITCH

3.2 FOCUS

3.3 HORZ. POSITION
3.4 HORZ. VERNIER
$3.5 \frac{\text { TIME/CM (TIME BASE) }}{\text { SWITCH. }}$
$3.6+\mathrm{OR}$ - SWITCH
3.7 VERTICAL POSITION
3.8 VOLTS/CM (ATTENUATOR)

Fully anti-clockwise, this control switches the instrument OFF. When rotated clockwise the instrument is switched ON and further rotation controls the trace intensity (brightness) from zero to max.
Controls the sharpness of the trace. May require slight readjustment over the full intensity control range.
Moves the trace horizontally on the CRT.
Varies the Time Base speed over a 12-1 range to provide a continuously variable range in conjunction with the TIME/CM switch from $0.1 \mathrm{Sec} / \mathrm{cm}$ to $1 \mu \mathrm{Sec} / \mathrm{cm}$. When the TIME/CM switch is turned and switched to HORZ AMP it switches off the Internal Time Base, permitting an external signal to be fed into the HORZ INPUT socket. The Horizontal Vernier now varies the sensitivity from 0.6 V to 6 V per cm approximately.
When the Time Base Vernier control is turned clockwise to the CAL position, the five time base speeds on this control will be accurate to within 10%. The speeds of 10 and 1 mSec . and 100,10 and $1 \mu \mathrm{Sec}$ represent the fastest speed on each range; anti-clockwise rotation of the Horizontal Vernier Control wil reduce the selected speed over a $12-1$ range, e.g. on the 1 mSec range the Vernier will vary the time base from 1 mSec down to less than $10 \mathrm{mSec} / \mathrm{cm}$ when fully anticlockwise.
Selects the polarity of the trigger waveform.
Moves the trace vertically on the CRT.
Switch adjusts the sensitivity of the Vertical amplifier from 20 mV per cm . (6 mV RMS) to 100 V per cm . in a $1,2,5,10$ series of steps. Attenuator accuracy is 3% and the overall Oscilloscope accuracy within 10% on any step.

3. FUNCTION OF CONTROLS (Cont'd.)

3.9 AC-DC SWITCH
3.10 TERMINALS \& SOCKETS:
3.11 INPUT
3.12 COMMON
3.13 GROUND
3.14 HORIZONTAL INPUT

The DC position provides direct coupling to the amplifier the AC position places a capacitor in series with the input to block the DC component.

Red terminal is the signal input connection to the vertical amplifier.
Black terminal should be connected to the ground side of the signal being measured. This terminal is not connected to the Oscilloscope chassis and may be taken to $\pm 400 \mathrm{~V}$ from ground.
This terminal is connected to the instrument cabinet and will normally ive linked to the Common terminal directly above it unless isolated ground measurements are required.
When the Time/cm Switch is turned anticlockwise to HORZ. AMPL. signals may be fed into this socket to produce a horizontal display, input is DC coupled. An external capacitor must be used if a high voltage $D C$ is present on the signal to be displayed, which causes the trace to be deflected off the screen.

4. FIRST TIME OPERATION

Check tapping on power transformer for correct connection for local supply mains. Instrument is fitted with universal primary for 100 to 240 V operation, connect as shown below to suit local power line voltage.

Instruments connected for other than $220-265 \mathrm{~V}$ tapping have a label attached stating supply voltage.

POWER TRANSF ORMER PRIMARY CONNECTIONS.

4. FIRST TIME OPERATION (Cont'd.)

4.1 Set the controls as follows before switching on:

Intensity	Fully anticlockwise
Focus	Centred
Horz. Position	Centred
Horizontal Vernier	Clockwise - CAL
Time/cm	10 mSec.
+- Selector	+
Vertical Position	Centred
Volts/cm	5 V
DC - AC	DC

4.2 Plug instrument into power line outlet. Connect links of wire from a supply such as a 6.3 V transformer to the vertical input socket on the L.H. side.

Switch on by rotating the intensity control about $3 / 4$ of a turn. A display will appear after a few seconds.

5 cycles of the calibration waveform should be present on the CRT. Adjust the horizontal and vertical position controls to centre the display and the focus and intensity for a sharp, bright image.
4.3 Now turn the Volt/cm switch to 2 V and the display will expand over full screen height, turning the knob around to $10 \mathrm{~V}, 20 \mathrm{~V}$ etc., will progressively reduce the height of the dispaly, below 1 cm amplitude the trace may start to lose stability.
4.4 Set the attenuator at the 0.2 V position and feed in a 1 V p-p square wave at 50 Hz . The effect of the DC - AC switch on low frequencies can now be seen by sliding the switch to the $A C$ position. The top and bottom edges of the display will tilt indicating a loss of the DC and the lowest frequency components in the square wave. Always use the DC position for frequencies below 100 Hz ., provided the waveform can be positioned on the screen with the vertical position control, if DC is present on the signal. Change input back to the 6.3V waveform as in 4.2. Now turn the Horizontal Vernier control, the waveforms will compress together. Switch the Time/cm switch to 1 mSec and adjust the vernier to give two complete waveforms on the CRT. Change the \pm switch and note how the triggering point changes.
4.5 Finally, we can check the HORZ. INPUT. Turn the Time, ${ }^{\prime}$ cm switch to Horz. Amp. Connect a lead from a IV AC source to the Horz. input socket. A horizontal line will appear whose length can be varied by the HORZ. VERNIER control.

5. MEASUREMENT OF DC (DIRECT) VOLTAGES

5.1 For an initial test take a $1 \frac{1}{2} \mathrm{~V}$ dry cell and set the attenuator to 0.5 V . Connect the negative end to the BLACK COMMON terminal, set the trace to the centre of the graticule, touch a lead from positive end of the battery to the DC terminal, the trace will move up 3 zms ., $3 \times 0.5 \mathrm{~V}=1.5 \mathrm{~V}$.
5.2 Now reverse the connections to the battery and note how the trace moves down 3 cms . This illustrates how an oscilloscope can display positive or negative voltages or both simultaneously, e.g. when viewing a sine or square wave.
5.3 NOTE: The $1 M \Omega$ input impedance of the Oscilloscope must be taken - into account when measuring high impedance points such as - the gate of a FET or the base of a transistor.
5.4 The $D C$ input facility may be used to measure $A C$ waveforms swinging about a DC voltage, as at the collector of a transistor or the anode of a valve, to check for bias settings or anode bottoming, etc., Max DC input should not exceed $\times 10$ input attenuator setting if it is required to re-centre the trace to view signal superimposed on it.
6. MEASUREMENT OF AC (ALTERNATING) VOLTAGES
6.1 Set the Attenuator to 50 V (if the input voltage is unknown). Connect a lead from the COMMON (Black) input terminal to the ground (earth) side of the signal source. (Model bwd 112B, 141 or 603 Sine Wave Oscillators are ideal for initial experiements in this test).

Increase the Vertical sensitivity by the VOLTS/CM switch until a display between 2 and 8 cm exists. Now adjust the Time Base switch and Vernier to enable the waveform to be.readily seen. To measure the voltage of the displayed waveform measure its overall height in centimetres by the calibrated graticule, then multiply this by the Attenuator setting and the result is in Volts p-p, e.g. if the display is 6 cm high and the Attenuator is set to 0.5 V then the amplitude is $6 \times 0.5=3 \mathrm{~V}$ peak to peak, to convert to RMS voltage for sine waves - divide the 3 V by 2.84 , e.g. $\frac{3}{2.85}=1.06 \mathrm{~V}$ RMS
6.2 The frequency of the waveform can be found by turning the Time Base VERNIER to CAL (clockwise), then switch the TIME/CM switch to a range where the signal can be clearly seen, e.g. if a waveform is 2 cm . long and the switch is on $100 \mu \mathrm{Sec}$, then the duration of the waveform is $2 \times 100 \mu \mathrm{Sec}$. The frequency of the displayed waveform can be found by dividing 1 second by the waveform duration, e.g. $\frac{1,000,000 \mu \mathrm{Sec}}{200 \mu \mathrm{Sec}}=5,000 \mathrm{~Hz}$.

7. ISOLATED MEASUREMENTS AC OR DC.

With the isolated ground of Model bwd 503 measurements can be made between any two points of a circuit, even if neither are at ground potential. The COMMON terminal has an impedance to ground of $1 M \Omega$ and is shunted by a $0.1 \mu \mathrm{~F}$ capacitor - this must be taken into account when connecting the COMMON to a point of high impedance. Maximum voltage that may be applied to the COMMON terminal is + or -400 V DC.
8. CURRENT MEASUREMENTS AC OR DC.

As this Model is isolated, it may be used to measure the voltage drop across a known resistor, and by use of Ohms Law; this may be converted to current. With 11Ω resistor across the vertical input terminals, the attenuator reads in mA and AMPS directly.
8.1 If this resistor is placed in series between a source and a load, the Oscilloscope will read the current flowing, either AC or DC in mA or AMPS, e.g. o. 1 V on the Attenuator $=0.1 \mathrm{~A}, 0.2 \mathrm{~V}=0.2 \mathrm{~A}$, etc., and unlike a meter will show the actual current waveform - a practical application is the charging current in a filter capacitor of a power supply or the current through a rectifier, etc.
9. MEASUREMENTS WITH AN EXTERNAL HORIZONTAL INPUT.

As the Horz. Input is directly coupled, the CRT display can be used for $\mathrm{X}-\mathrm{Y}$ plotting over an $8 \times 10 \mathrm{~cm}$ area.
9.1 First calibrate the Horizontal Amplifier by feeding in 5V p-p waveform and adjusting the HORZ. GAIN until the display equals 5 cm . long; now set the Vertical Attenuator to IV/cm. The Oscilloscope has now identical X and Y sensitivities, of $I V$ per cm . (Other sensitivies car, be used with equal or unequal sensitivities, as required).
9.2 Remove the calibrate waveform and centre the spot. Positive or negative voltages may now be applied to X and Y inputs and the result plotted on tracing paper placed over the CRT or transferred to a ruled graph paper. AC signals will show phase displays or Lissajous figures. With the vertical input switched to $D C$ there is less than 3° phase shift $D C$ to 20 kHz between X and Y input.

10. CIRCUIT DESCRIPTION

NOTE: As the circuit is isolated from gound, all measurements must be made with respect to the COMMON terminal on the front panel.
10.1 Vertical Amplifier. Signals applied to the Input terminal are switched straight through to the attenuator in the DC position of Sl or via Cl to block the DC component in the AC position. Switch S2A-D attenuates the input signal in a $2,5,10,20$ sequence. Section S2A \& B attenuate the signal in a $1,10,100,1000$ sequence every 3 rd step. Sections

S2C and D steps the input in the $2,5,10$ sequence. As the two sections are cascaded the result follows the $2,5,10,20$ sequence. To maintain constant AC to DC ratio the resistor dividers are parallel by capacitors, adjusted such that the $C \times R$ value of the series arm is equal to the $C \times R$ value of the shunt arm to each step. The vertical amplifier comprises a balanced series shunt compensated stage driving a cascade deflection amplifier stage.
10.2 Q1 and Q2 FET's are the input series compensated amplifiers which provide a high impedance for the input signal from the attenuator and a constant current source for the following shunt compensated stage. Input protection for Q1 is provided by reversed biased low leakage diodes D1 and D2. In the event of a positive overvoltage being applied to the input, D1 will conduct into the low impedance of R31, whilst D2 conducts via C20 and the zener D9 with large negative signals.

The zener in the sources of Q1 and Q2 changes the amplifier gain in opposition to changes of line voltage and thus maintain a constant calibration sensitivity irrespective of line voltage variation. To further minimise line effects on the display, Q1 and Q2 are accurately matched for both gain and operating current and RV3 balance potentiometer provides the final adjustment to virtually eliminate all line or signal variations on the DC rails.

Amplifier calibration is adjusted by shunt resistor RV2, whilst positioning voltages are applied from RV1 via R20 and R21 and mixed with the input signal at Q1 and Q2 drains where it is directly coupled to the shunt feed back stage Q3 and Q4: This stage provides a high gain and wide bandwidth with very low output impedance enabling it to drive the output stage directly. The output cascode stage Q5 to Q8 incorporates high frequency compensation located between Q5 and Q6 emitters.

CRT Y - plates are directly coupled to Q7 and Q8 collectors whilst internal trigger take off from the collectors is via resistors R50 and 51.
10.3 Trigger Circuit. Internal + or - trigger signals are selected by S3 and applied via C30 to Q9 trigger input.

Q9 and Q10 form a Schmitt Trigger which generates a precise amplitude fast rise and fall pulse from any input signal large enough to trigger it.

The action is as follows:-
With Q9 conducting its collector will bottom and Q10 will be cut off by the voltage divider across R54,55,58 and RV4. A negative going input will cut off Q9, its collector will rise pulling Q10 into conduction so producing a negative going voltage drop across its collector load R59. Q9 and Q10 have a common emitter load R56, therefore current through Q10 will hold Q9 cut off until the input signal changes polarity and rises positively reversing the switching action.

Trigger sensitivity is set by RV4 sensitivity preset.
10.4 Time Base. This circuit consists of Q11 and Q12 bi-stable trigger, Q14 FET Miller integrator and Q15 emitter follower output. D3 is the Auto gating diode driven by Q13 the blanking generator. Diode D6 gates the Miller stage, D4 and D5 clamp Q11 and Q12, D8 sets the trace length and D7 the starting level of the saw tooth waveform.
10.5 The operation is as follows:

Assuming Q11 in conducting, Q12 will be cut off, its collector will rise and D12 will conduct, pulling the gate of Q14 positive. The drain of Q14 will fall to approximately +3 V pulling down Q 15 base. At this point diode D7 connected into the emitter load of Q15 passes below zero, conducts and pulls Q12 collector down reducing the conduction of D4.
10.6 The circuit stabilises in this quiescent state with the trace ready for a trigger input pulse from Q10 via C33. A negative pulse on Q11 base will cause its collector to rise taking Q12 base positive. This causes current to flow through Q12 through the emitter resistor R72, biasing Q12 saturates. D6 becomes reverse biased, Q14 is left with its gate at -IV approximately and connected through the timing resistor R74 and 76 as selected by S4C to a negative potential on RV5A. This voltage will endeavour to pull Q14 towards cut-off. However, the timing capacitors selected by S4C are in circuit between the gate and drain of the Miller FET Q14 and will be charged by the current through the timing resistor.
10.7 Q14 FET gate presents a high impedance to the charging circuit enabling high value charging resistors to be utilised with small high stability timing capacitors. Q15 emitter follower provides a low output impedance to charge the timing capacitors and drive the output amplifier and gating circuits. As Q14 gate falls its collector rises and via Q15, R77 and C35 a charge is applied to the selected timing capacitor on S4C.

The result of this negative feedback is to linearise the charging rate of the timing capacitor and to produce a positive going sawtooth waveform at the drain of Q14 and via the DC coupling to Q15 where it is available at low impedance from the emitter. The sawtocth voltage continues to rise until the potential at the junction of RV7 and D8 reaches approximately $-6 \mathrm{~V}, \mathrm{D} 8$ then conducts and charges C42, 44, 45,46 as selected by $S 48$. It also takes the base of Q11 positive to its emitter potential and continues positively until Q11 conducts causing its collector to fall, cutting off Q12 and at the same time transferring the emitter current from Q12 to Q11. D6 conducts pulling the gate of Q14 positively, its drain voltage falls, rapidly
10. CIRCUIT DESCRIPTION (Cont'd.)
discharging the timing capacitor until Q15 emitter falls sufficiently to cause D7 to conduct and pull D6 back to a quiescent condition and stabilise the circuit condition ready for the next trigger pulse. This will initiate the next trace once the hold-off capacitor C42, 44,45 and 46 to have discharged through R62 and the base current of Q11 to allow D4 to clamp the base of Q11 in its ready state.
10.8 The Auto Time base operction is obtained as follows. During the sweep time Q12 is conducting, its collector is negative to ground so Q13 whose base is connected via R71 to Q12 collector is negative to ground so Q13 whose base is connected via R17 to Q12 collector conducts and via D3 clamps R60 near ground potential discharging capacitors C32 and C43-46 as selected by S4A. During the return trace period Q12 ceases to conduct, its collector rises and turns off Q13, D3 disconnects allowing the selected Auto capacitor to charge through the divider R56, 61 and 62. The junction of R60 and 61 falls and if no trigger signal is present to initiate the circuit, it will continue negatively until D4 becomes forward biased pulling down the diode clamp divider and causing Q11 to become reversed biased thus initiating the time base to produce one sweep. This action is repeated until a trigger pulse is generated to lock the time base, thus providing a bright base line at all sweep speeds when no trigger signal is present.
10.9 CRT blanking during the return trace is performed by PNP transistor Q13 which is held by the divider R70 and R71. When Q12 is cut off during the return trace its collector rises and via R70 and 71, Q13 cuts off causing its collector to fall towards -50 V . The fall in voltage is applied to the CRT grid via C57 to blank the trace. Diode D10 clamps the blanking pulse to ensure a constant brightness at all time base speeds. At the start of the forward trace Q12 again conducts heavily biasing Q13 on via R71. The collector rises rapidly to -0.2 V . The positive going pulse from the collector to the CRT grid to unblank it is fed through C51.
> 10.10Horizontal Amplifier. Q16 and 17 amplifies the time base sawtooth waveform on an external horizontal input. They form an emitter coupled long tail pair.

Four input signals feed Q16 base, these are:-

1. The time base waveform via R78 from Q15.
2. Via R81 from the X input socket and HORZ vernier control.
3. Horizontal position voltage via R84 from position control RV8.
4. A centering voltage via R 85 from the -46 V rail.

10. CIRCUIT DESCRIPTION (Cont'd.)

When the time base is turned off for $X-Y$ operation, all switching is accomplished by $\mathrm{S4}$. S4B connects R 103 to the -46 V rail and turns off the time base, Q14 gate is connected to Q15 emitter. Q15 falls to zero leaving all inputs to Q16 at approximately zero potential leaving the position control able to vary it over a + and - range.

As the Ext. input is applied to the same input transistor as the positive going time base signal, twe inputs will deflect the spot to the right.
10.11 CRT. Negative EHT is obtained by voltage doubling the 500 V $\overline{A C}$ winding by D11 to 14 and capacitors C52 - 55 both doubling and filtering. Blanking is obtained as previously discussed. Iniensity is adjusted by RV11 connected in a divider with R107, focus control RV10 and R101 across the EHT supply.

Astigmatism is preset by RV9 internally.
10.12 Power Supplies.
+44 V . D17 half wave rectifies a 51 V AC winding which is followed by a three stage filter C61, C59-61, this supplies the +44 V requirements.
-46V. The same 5IV AC winding is also half wave rectified by D18 and followed by C62, 63 and 64 three stage filter for the -ve 46 V supply.

The -50 V tapping on the filters used to supply Q13 blanking amplifier and Q1 and 2 input amplifiers.
+180 V . An 82 V winding is doubled by D15 and D16, C57 and C58 and filtered by a single stage R96 and C56 for the horizontal and vertical output stages.

11. ADJUSTMENTS AND MAINTENANCE

11.1 A number of preset controls are contained in this instrument which may require periodical adjustments to maintain its full calibration.

Before removing the top cover, disconnect the instrument from the mains. Remove the two screws holding the handle, then withdraw the cover. The bottom cover may be removed by unscrewing the feet.

To aid fault finding, the voltages and waveforms present at various points are shown on the circuit.
11.2 If the input FET requires replacing they must be replaced with a selected pair balanced for current and gain to ensure correct calibration and minimum trace movement with input line change.
11. ADJUSTMENTS AND MAINTENANCE (Cont'd.)
11.3 Alignment Procedure. When instrument functioning and trace
aligned to graticule, check the following details prior to alignment
with Time Base switched to 1 mSec .
11.4 Check operation of Time Base and Vernier on each Time Base range.
11.5 Turn Time Base switch to HORZ. AMP. spot should move $\pm 5 \mathrm{~cm}$ with Horizontal Shift.

11.6 General Check of Controls:-

(a) Intensity: Complete control over intensity range.
(b) Focus: Adjustment available either side.
(c) Vert. Position: Trace should move completely off screen above and below centre.
11.7 CRT Trace Alignment. If a 1000 Hz sine wave signal is available, feed this into the Vertical Amplifier and adjust waveform for 6 cm deflection T.V. to 1 mSec . Vernier at Cal.

The astigmatism preset RV9 at the rear of the P. C. board is adjusted in conjunction with the Focus control to obtain the best resolution over the entire screen area when intensity is adjusted to maximum brightness but without fly back showing.

11.8 Attenuator and Calibration. Test equipment required 1 kHz Square Wave Generator.

Set attenuator to 0.02 V , feed in 100 mV p-p (1% accuracy) square wave. Adjust RV2 for 5 cm display. Vertical amplifier of oscilloscope is now correctly calibrated.

The following chart indicates the adjustments ne cessary to fully align the attenuator.

Attenuator Setting	Input Voltage	Adjustment for Square Wave
0.02	100 mV	-
0.05	200 mV	Cl 4
0.1	500 mV	C15
0.2	1 V	C5
0.5	2V	C12
1	5 V	C13
2	10V	C6
5	20V	-
10	50 V	-
20	100 V	-
50	100 V	-
100	100V	-

Attenuator will be automatically aligned at attenuator positions where there is no capacitor.

11.9 Vertical Amplifier

Test equipment required 100 kHz Square Wave Generator, less than 50 nSec . rise time. (bwd 112B is suitable if terminated by 100Ω at input terminals of scope).

Attenuator to 0.2 V , input selector to AC , signal input IV p-p 100 kHz T. B. range $1 \mu \mathrm{Sec}$ Vernier to Cal. Check square wave is a good shape. No adjustment is available but R36 can be varied if necessary.

Check bandwidth with a constant amplitude sine wave generator. Adjust deflection for 4 cm at 50 kHz , display should not drop to less than 2.8 cm at 3 MHz .

11.10-Horizontal Amplifier

Test equipment 1 Hz to 1 MHz Sine Wave Generator (Model bwd 141). Feed in 50 kHz sine wave to Vertical Amplifier. Time Base to $100 \mu \mathrm{Sec} / \mathrm{cm}$, Vernier anticlock. Adjust RV7 to set trace length to 10.2 cm .

Now disconnect oscillator from vertical input and reconnect to Horizontal Input. Adjust display for 6 cm deflection at 1 kHz , increase frequency and note frequency when trace drops to 4.2 cm length - it should be above 100 kHz .

Sensitivity: Feed in 1 kHz square wave 6 V p-p amplitude, trace should be approximately 10 cm long at maximum gain and 1 cm long at minimum gain.

11.11 X - Y Phase Measurement

Turn attenuator to $\mathrm{IV} / \mathrm{cm}$, feed in 6 V p-p lkHz sine wave to both vertical and horizontal inputs. Adjust Horz. Vernier for a 45° line on CRT, i.e. equal $X-Y$ sensitivities. Now increase frequency, line should not open in the centre of the wave more than 3 mm at frequencies to 20 kHz . At maximum sensitivity.

11.12 Trigger Sensitivity

Feed in 50 kHz sine wave, time base to $10 \mu \mathrm{Sec} / \mathrm{cm}$, + or - trigger selection. Reduce amplitude of input signal until trace ceases to lock. Adjust RV4 (centre front of board) for maximum sensitivity of trigger - <lcm display amplitude. Increase display to 3 cm deflection increase frequency of input up to $>3 \mathrm{MHz}$, note that trace remains locked both + or -ve selection.

To check low frequency trigger use a bwd 141 oscillator. Icm deflection will trigger to 20 Hz and 3 cm down to 5 Hz .
11.13 Time Base

Test equipment required $<1 \%$ accuracy generator with $1 \mu \mathrm{Sec}$ to 0.1 Sec output in decade steps. Set Time Base Range to 1 mSec, Vernier to Cal. Feed in ImSec pulse to amplifier and adjust RV6 (T.B. Cal. front right of P / C board) to display 1 pulse per cm . Check the following steps with the frequency indicated and if necessary adjust RV9 for a compromise setting to obtain the minimum error at each step.
T. B. Range
$1 \mu \mathrm{Sec}$
$10 \mu \mathrm{Sec}$
1 mSec
10 mSec

100 Hz)

12. REPLACEMENT PARTS

12.1 Spares are normally available direct from the manufacturer. When ordering, it is necessary to indicate the serial number of the instrument. If exact replacements are not to hand, locally available alternatives may be used, provided they possess a specification not less than, or physical size not greater than the original component.
12.2 As the policy is one of continuing research and development, the Company reserves the right to supply the latest equipment and make amendments to circuits and parts without notice.
13. WARRANTY
13.1 The equipment is guaranteed for a period of six (6) months from the date of purchase against faulty materials and workmanship with the exception of cathode ray tubes, which are covered by their manufacturers own warranty.
13.2 Please refer to Guarantee Card No. 1.5.62.4. which accompanied instrument for full details of conditions of warranty.

REPLACEABLE PARTS.

1. This section contains information for ordering replacement parts, it provides the following details:-
(a) Description of part (see list of abbreviations).
(b) Typical manufacturer or supplier of the part (see list of abbreviations).
(c) Manufacturer's Part Number, and
(d) Defence Stock Number, where applicable.
2. Ordering - Please quote Model Type No., e.g. bwd 511, Serial No. Circuit Reference No. and component details as listed in parts list.

COMPONENT DESIGNATORS.

A	Assembly	H	Heater	RV	Resistor Variable
B	Lamp	J	Jack (socket)	S	Switch
C	Capacitor	L	Inductor	T	Transformer
D	Diode	M	Meter	TH	Thermistor
DL	Delay Line	P	Plug	V	Valve
E	Misc. Elect. Part	Q	Transistor	VDR	Voltage Dependent
F	Fuse	R	Resistor		Resistor

ABBREVIATIONS

Amp	Ampere
C	Capacitor
cc	Cracked Carbon
c	Carbon
cd	Deposited Carbon
comp	Composition
CDS	Ceramic Disc Capacitor
cer	ceramic
Com	Common
DPST	Double Pole Single Throw
DPDT	Double Pole Double Throw
elec	Electrolytic
F	Farad
f	Fuse
FET	Field Effect Transistor
Ge	Germanium
H	Henry(ies)
H.S.	High Stability
HTC	High Temp Coating
ins	Insulated
kHz	Kilo Hertz $=10^{3} \mathrm{~Hz}$
K Ω	Kilo Ohm $=10^{3} \Omega$

L	Inductor
lin	Linear
Log	Logarithmic Taper
m	Milli $=10^{-3}$
MHz	Mega Hertz $=10^{6} \mathrm{~Hz}$
MF	Metal Film
ma	Milli Ampere
$\mathrm{M} \Omega$	Meg Ohm $=10^{6} \Omega$
mfr	Manufacturer
MO	Metal Oxide
MHT	Polyester/Paper Capacitor
MPC	Metalised Polyester Capacitor
Ne	Neon
NPO	Zero temperature co-efficient
nsr	Not separately replaceable
NC	Normally Closed
NO	Normally Open
ns	Nano second
obd	Order by Description
OD	Outside Diameter
p	Peak
pf	pico farad = $10^{-12} \mathrm{~F}$

PL	Plug	SPDT	Single Pole Double Throw
PS	Socket	SPST	Single Pole Single Throw
Preset	Internal Preset	S. Shaft	Slotted Shaft
PYE	Polyester	Si	Silicon
pot	Potentiometer	Ta	Tantalum
prec	Precision	tol	Tolerance
PC	Printed circuit	trim	trimmer
PIV	Peak Inverse Voltage	V	Volt(s)
PYS	Polystyrene	var	variable
p-p	Peak to Peak	vdcw	Volts Direct Current Working
P. Shaft	Plain Shaft	w	Watt(s)
Q	Transistor	ww	Wire Wound
R	Resistor	Z	Zener
rot	rotary	$*$	Factory Selected value, nominal value
R log	Reverse Logarithmic Taper		may be shown
rms	Root Mean Squared	$* *$	Special component, no part no. assigned.

MANUFACTURERS ABBREVIATIONS.

AB	A.B. Electronics	J	Jabel
AEE	AEE Capacitors	McH	McKenzie \& Holland (Westinghouse)
AN	Anodeon	MAS	Master Instrument Co. Pty Ltd.
AST	Astronic Imports	MOR	Morganite (Aust.) Pty. Ltd.
AWA	Amalgamated Wireless of Aust	. MSP	Manufacturers Special Products (AWA)
ACM	Acme Engineering Pty.Ltd.	McM	McMurdo (Aust.) Pry Ltd.
AMP	Aircraft Marine Products (Aust.) Pty.Ltd.,	MOT Nu	Motorola Nu Vu Pty. Ltd.
AR	A \& R Transformers	NAU	A. G. Naunton Pty. Ltd.
AUS	Australux Fuses	NS	National Semiconductor
AWV	Amalgamated Wireless Valve Co.	$\begin{aligned} & \text { PA } \\ & \text { PAL } \end{aligned}$	Painton Paton Elect Pty. Ltd.
ACA	Amplifier Co. of Aust.	PI	Piher Resistors (Sonar Electronics)
ARR	Arrow	PH	Philips Electrical Industries Pty.Ltd.
BWD	B. W. D. Electronics Pty. Ltd.	PL	Plessey Pacific
BL	Belling \& Lee Pty. Ltd.	PRO	Procel
BR	Brentware (Vic.) Pty. Ltd.	PV	Peaston Vic
BU	Bulgin	RC	Radio Corporation (Electronic Inds.)
CF	Carr Fastener	RCA	Radio Corporation of America
CAN	Cannon Electrics Pty.Ltd.	RHC	R.H. Cunningham
CIN	Cinch	STC	Standard Te lephone \& Cables
DAR	Darstan	SI	Siemens Electrical Industries
DIS	Distributors Corporation Pty. Ltd.	$\begin{aligned} & \text { SIM } \\ & \text { SE } \end{aligned}$	Simonson Pty. Ltd. Selectronic Components
ELN	Elna Capacitors (Sonar Elec. Pty.Ltd.)	$\begin{aligned} & \text { SON } \\ & \text { TR } \end{aligned}$	Sonar Electronics Trimax Erricson Transformers
ETD	Electron Tube Dist.	TI	Texas Instruments Pty. Ltd.
F	Fairchild Australia Pty Ltd.	TH	Thorn Atlas
GRA	General Radio Agencies	UC	Union Carbide
GE	General Electric (USA)	W	Wellyn Resistors (Cannon Elec. Pty. Ltd.)
GEC	General Electric Co. (UK)	WH	Westinghouse
GES	General Electronic Services	Z	Zephyr Prod. Pty.Ltd.
HW	Hurtle Webster		
HOL	R G. Holloway		
H	Haco Distributors (National)		
HS	Hawker Sidney		338/dmw

$\begin{aligned} & \text { CCT } \\ & \text { Ref. } \end{aligned}$	DESCRIPTION				Mfr. or Supply.	PART NO.	
	RESISTORS						
R97	470Ω	5\%	1/2W	CC			
R98	680Ω	5\%	1/2W	CC			
R99	270Ω	5\%	1/2W	CC			
R100	470	5\%	1/2W	CC			
R101	2M2	5\%	1 W	CC			
R102	680K	5\%	1/2W	CC			
	CAPACITORS						
Cl	$0.1 \mu \mathrm{~F}$	400 V	10\%	PYE	PH	2202-315-51104	
C2	5.6pF	500 V	10\%	CDS	AC		
C3	18pF	500 V	10\%	CDS	AC		
C4	18pF	500 V	10\%	CDS	AC		
C5	2-10pF	TRIM	CAP.		IRH	CT3	
C6	470pF	250 V	5\%	PYS	AC		
C7	4700pF	400 V	10\%	PYE	PH	2202-315-51472	
C8	$0.1 \mu \mathrm{~F}$	400 V	10\%	PYE	PH	2202-315-51104	
C9	22pF	500 V	10\%	CDS	AC		
C10	5.6pF	500 V	10\%	CDS			
C11	15pF	500 V		CDS	AC		
C12	2-10pF	TRIM	CAP.		IRH	CT3	
C13	2-10pF	TRIM	CAP.		IRH	CT3	
C14	2-10pF	TRIM	CAP.		IRH	CT3	
C15	2-10pF	TRIM	CAP.		IRH	CT3	
C16	4.7pF	500 V .	5\%	CDS	AC		
Cl 7	0.0022 F	500 V	10\%	CDS	HS		
C20	100 ${ }^{\text {F }}$	25 V		Electr.	PH	2222-016-16101	
C21	$33 \mu \mathrm{~F}$	40 V		Electr.	PH	2222-015-17339	
C22	22pF	250 V	5\%	PYS	AC		
C23	680pF	250 V	5\%	PYS	$A C$		
C24	47pF	250 V	5\%	PYS			
C30	$0.1 \mu \mathrm{~F}$	160 V	10\%	PYE	PH	2202-315-31104	
C31	22pF	500 V	5\%	CDS	AC		
C32	$0.01 \mu \mathrm{~F}$	160 V	10\%	PYE	PH	2202-315-31103	
C33	15pF	500 V	5\%	CDS	AC		
C34	22pF	500 V	5\%	CDS	AC		
C35	$0.01 \mu \mathrm{~F}$	160 V	10\%	PYE	PH	2202-315-31103	
C36	22pF	500 V		CDS	AC		

PARTS LIST - MODEL bwd 503

$\begin{aligned} & \text { CCT } \\ & \text { Ref } \end{aligned}$	DESCRIPTION		Mfr.or Supply	PART NO.	
	DIODES				
D1	Silicon Signal Diode		F	AN206	
D2	Silicon Signal Diode		F	AN206	
D3	Silicon Signal Diode		F	AN206	
D4			F	AN206	
D5	Silicon Signal Diode		F	AN206	
D6			F	AN206	
D7	Silicon Signal Diode Silicon Signal Diode		F	AN206	
D8			F	AN206	
D9	$33 \mathrm{~V} \quad \text { Zener Diode }$		F	AN973B	
D10			F	AN206	
D11	Silicon Signal Diode Silicon Power Diode $\quad 1000 \mathrm{~V}$		AEE	PAB2124	
D12	Silicon Power Diode 1000V		AEE	PAB2124	
D13	Silicon Power Diode Silicon Power Diode	1000V	AEE	PAB2124	
D14		1000V	AEE	PAB2124	
D15	Silicon Power Diode		STC	EM404	
D16	Silicon Power Diode		STC	EM404	
D17	Silicon Power Diode		STC	EM404	
D18	Silicon Power Diode		STC	EM404	
	TRANSISTORS				
Q1	Silicon N Channel FET		NS	MPFIO6	Match Q2
Q2	Silicon N Channel FET		NS	MPF10	Match Q1
Q3	NPN Silicon Transistor		PH	BF194	
Q4	NPN Silicon Transistor		PH	BF194	
Q5	NPN Silicon Transistor		PH	BF194	
Q6	NPN Silicon Transistor		PH	BF194	
Q7	NPN Silicon Transistor		PH	BF337	
Q8	NPN Silicon Transistor		PH	BF337	
Q9	NPN Silicon Transistor		PH	BC147	
Q10	NPN Silicon Transistor		PH	BC147	
Q11	NPN Silicon Transistor		PH	BC147	
Q12	NPN Silicon Transistor		PH	BC147	
Q13	PNP Silicon Transistor		PH	BC157	
Q14	Silicon N Channel FET		NS	MPFIO6	
Q15	NPN Silicon Transistor		PH	BC147	
Q16	NPN Silicon Transistor		PH	BF337	
Q17	NPN Silicon Transistor		PH	BF337	

ALL OTHER ITEMS ORDER BY DESCRIPTION

