# TECHNICAL INFORMATION AND SERVICE DATA # A.W.A. SIX TRANSISTOR PORTABLE Model B60 ### GENERAL DESCRIPTION The B60 is a six transistor, battery operated superheterodyne portable receiver designed for the reception of the Medium Wave Broadcasting Band. This model incorporates separate R.F. and A.F. printed circuit boards and provision is made for earphone operation. # ELECTRICAL AND MECHANICAL SPECIFICATIONS D | Battery Consumption: For zero audio output For 50 mW audio output For full audio output | 25mA | |--------------------------------------------------------------------------------------------|--------------------| | Loudspeaker: 2¾″ | 53386 | | V.C. Impedance | 33 ohms at 400 Hz | | Power Output | 180mW | | Controls: Tuning and Volume, | ON-OFF. | | Transistor and Diode Complen | nent: | | AS300 | Converter | | AS300 | 1st I.F. Amplifier | | AS302 | 2nd I.F. Amplifier | | AS313 | Driver | | AS311 | Audio Output | | AS128 | Audio Output | | 1N87A | Detector Diode | | | Signal Clamp Diode | | OA95 | Overload Diode | | AS9 | Compensating Diode | | | | Frequency Range 525-1770 kHz | imensio | ns: | | | | | | | |---------|-----|------|------|------|------|------|---------| | Height | | <br> | <br> | <br> | <br> | <br> | <br>3¾" | | Width | | <br> | <br> | <br> | <br> | <br> | <br>63" | | Depth | | | | | | | | | Weight | | | | | | | | ### **Printed Circuit Board Servicing:** Remove a Philips Head screw securing each board to the cabinet front. The boards may now be tilted to gain access to the wiring side. ### Adjustment of Output Idling Current: An adjustment is provided on the audio board for controlling the output idling current. This adjustment is made during manufacture and need only be checked if any of the following conditions arise. - 1. The receiver idling current at minimum volume is greater than 11 mA with 9V supply. - 2. Cross-over distortion is present. - 3. Any transistor or resistor is replaced in the audio board. The adjustment is as follows:— Disconnect the bridge between points U and V and the red wander lead from the test point U. Connect an ammeter between the test point and the wander lead, set the volume control in its minimum position and adjust RV101 to give a reading of 2.5 to 3mA on the meter. # Adjustment of Output Idling Current: An adjustment is provided in the audio board for controlling the output idling current. This adjustment is made during manufacture and need only be checked if any of the following conditions arise:— - 1. The receiver idling current at minimum volume is greater than 13mA with 9 volts supply. - 2. Cross-over distortion is present. 3. Any transistor or resistor is replaced in the audio board. The adjustment is as follows:— Disconnect the red wander lead at the test point provided (Fig. 2) and insert an ammeter between the test point and wander lead. With the volume control set in its minimum (anti-clockwise) position, adjust RV101 to give a reading of 2.5 to 3mA on the meter. ### ALIGNMENT PROCEDURE For all alignment operations, keep the generator output as low as possible to avoid a.g.c. action and set the volume control in the maximum position. ### **Testing Instruments:** Signal Generator — modulated 400 Hz or modulated oscillator. If the modulated oscillator is used, connect a 220K ohms non-inductive resistor across the output terminals. Output Meter. 15 ohm impedance. I.F. Alignment Tool No. 39462. # **ALIGNMENT TABLE** (Refer to fig. 2) | ALIGN.<br>Order | CONNECT "HIGH" SIDE OF GENERATOR TO: | TUNE GENERATOR<br>TO: | TUNE RECEIVER<br>TO: | ADJUST FOR MAX.<br>PEAK OUTPUT | |-----------------|---------------------------------------|-----------------------|----------------------|--------------------------------| | 1 | Aerial Section of Gang** | 455 kHz | Gang fully closed | Cores in TR5, TR4 and TR3 | | Repeat | adjustment until maximum ou | tput is obtained. | • | | | 2 | Inductively coupled<br>to Rod Aerial* | 600 kHz | 600 kHz | Osc. Core (TR2) † | | 3 | Inductively coupled to Rod Aerial* | 1,770 kHz | Gang fully open | Osc. Trimmer (C4) | | 4 | Inductively coupled<br>to Rod Aerial* | 1,500 kHz | 1,500 kHz | Aerial Trimmer (C2) | Repeat adjustments 2, 3 and 4 until no further improvement is possible. \*\* As the gang frame is connected to the R.F. board positive rail which is 0.3 volts above ground (battery positive terminal), neither side of the power supply or output meter should be earthed during this operation. \* A coil comprising 3 turns of 16 gauge D.C.C. wire, about 12 inches in diameter should be connected between the output terminals of the test instrument, placed concentric with the rod aerial and distant not less than 1 foot from it. † Rock the tuning control back and forth through the signal. N.B. On completion of the alignment check the calibration of the twin pointers as follows. Check the left hand pointer directly against the frequency scale and adjust pointer position as necessary. Tune to 600kHz (6 on MW scale) and adjust right hand pointer to accurately indicate 7ZL. # CIRCUIT CODE | CODE | No. | DESCRIPTION | PART No. | CODE | No. | DESCRIPTION | PART No. | |--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------| | AII<br>R1<br>R2 | Resistors compositi | RESISTORS ion type unless otherwise $\pm 10\%$ $\frac{1}{2}$ watt $\pm 10\%$ $\frac{1}{2}$ watt | e stated. | C10<br>C11<br>C12<br>C13<br>C14<br>C15 | 16μF 10VW E<br>0.1μF +80%<br>330pF ±5%<br>0.1μF ±80%<br>0.04μF ±20% | Electrolytic 5. —20% 25VW Hi-K disc N750 disc 6. —20% 25VW Hi-K disc 7. 200VW AEE W99 | 228878 | | R3<br>R4<br>R5<br>R6<br>R7<br>R8<br>R9<br>R10<br>R11<br>R12<br>R13 | 100K ohms 15 ohms 1.8K ohms 56K ohms 82K ohms 1.5K ohms 100 ohms 12K ohms 15K ohms | #10% | | C16<br>C17<br>C18<br>C19<br>C20<br>C21<br>C22<br>C101<br>C102<br>C103 | 0.1μF +80%<br>330pF ±20%<br>400μF 10VW<br>16μF 10VW E<br>4μF 10VW Ele | 5 —20% 50VW disc (MSK)<br>N750 disc<br>Electrolytic<br>lectrolytic<br>ectrolytic | 228189<br>227095<br>229786<br>228878<br>228189 | | R14<br>R15<br>R16<br>R17<br>R18<br>R19 | 1K ohms<br>820 ohms<br>100 ohms<br>220 ohms<br>2.2K ohms<br>100 ohms | $\pm 10\%$ $\frac{1}{2}$ watt | | C104<br>C105<br>C106<br>C107 | 320μF 6VW E | lectrolytic<br>0% —20% K5000 disc<br>lectrolytic | 229773<br>229773<br>229786 | | R20†<br>R101<br>R102<br>R103<br>R104<br>R105<br>R106 | 100K ohms<br>270 ohms<br>1.8K ohms<br>3.3K ohms<br>8.2K ohms<br>5.6 ohms<br>820 ohms | ±10% ½ watt ±5% ½ watt +10% ¾ watt | | TR1<br>TR2<br>TR3<br>TR4<br>TR5 | Ferrite Rod A<br>Oscillator Tra<br>1st I.F. Trans<br>2nd I.F. Trans<br>3rd I.F. Trans | ssembly<br>nsformer<br>former<br>former | 54132<br>54159<br>54161<br>54163<br>54165 | | R107<br>R108<br>R109<br>R110<br>RV1 | 1.5K ohms<br>680 ohms<br>1.5 ohms<br>1.5 ohms<br>5K ohms curve T | $\begin{array}{cccc} \pm 5\% & \frac{1}{2} \text{ watt} \\ \pm 10\% & \frac{1}{2} \text{ watt} \\ \end{array}$ | 620041 | VT1<br>VT2<br>VT3 | A.W.V. AS300<br>Not used<br>A.W.V. AS300 | INSISTORS & DIODES | | | RV101 | | PACITATORS | 619962 | VT4<br>VT101<br>VT102<br>VT103 | A.W.V. AS302<br>A.W.V. 2N408<br>A.W.V. AS311<br>A.W.V. AS128<br>A.W.V. AS311 | or AS313 | | | C1<br>C2<br>C3<br>C4<br>C5<br>C6 | 10-200pF Tuning $0.3$ -12pF Trimmer A 10-87pF Tuning $0.3$ -12pF Trimmer $0.01\mu\text{F} \pm 20\%$ 20 1 $\mu\text{F} \pm 80\%$ \pm$ | erial<br>scillator<br>Oscillator | 62746 | MR1<br>MR2<br>MR3<br>MR101 | 1N87A<br>OA95<br>OA95 | | | | C7<br>C8<br>C9 | | 200VW AEE W99<br>20% 25VW Hi-K disc<br>50VW Polystyrene<br>200VW AEE W99<br>60 disc<br>ary in production. | | LS1101 | Battery Saver<br>Speaker 5" x<br>Battery Plug | MISCELLANEOUS<br>Jack<br>3" | 417405<br>50259<br>34623 | # D.C. RESISTANCE OF WINDINGS | Winding | D.C. Resistance<br>in ohms | Winding | D.C. Resistance<br>in ohms | | |---------------------------------------------------------------------------|----------------------------|----------------------------------------------------|----------------------------|--| | Ferrite Rod Assembly (TR1) Oscillator Transformer (TR2) Primary Secondary | 2<br>4<br>* | 2nd I.F. Transformer (TR4) Primary Secondary | | | | 1st I.F. Transformer (TR3) Primary Secondary | 3 * | 3rd I.F. Transformer (TR5)<br>Primary<br>Secondary | 3 | | <sup>\*</sup> Less than 1 ohm. The above readings were taken on components from a standard chassis, but substitution of materials during manufacture may cause variations and it should not be assumed that a component is faulty if a slightly different reading is obtained. # **MECHANICAL REPLACEMENT PARTS** | Item | Part No. | Item | Part No. | |-------------------------------|----------|----------------------------------------------------|--------------------| | Back, Assembly, Cabinet | 68841 | Gang Mounting | _ | | Bracket, Speaker Mounting (2) | 68807 | Gang Assembly | 62746<br>36826/002 | | Chassis, Moulded | 68844 | Grommet (3)<br>Screw Ch./Hd. 4BA x ½" (3) | 714008 | | Circlip, Handle Retaining (2) | 2537 | Spacer (3) | 35923 | | Clamp, Battery Lead | 211067 | Washer, Flat, 4BA (3) | | | Drum, Gang | | Handle, Assembly<br>Knob, Tuning | 68852<br>68858 | | Front Assembly, Cabinet | | Knob, Volume — ON/OFF | 68848 | | Comprising: | | Nut, Spire (3)<br>Nut, Spire (1) | 492148<br>492157 | | Badge, A.W.A. | 68856 | Pointer (2) | | | Dial Scale | 65045 | Screw, Back Retaining (2) | 760596 | | Front, Cabinet | 68840 | Spring, Drive CordSpeed Nut, Tuning Knob Retaining | 44189<br>492094 | NOTE: When ordering spares, always quote the above Part Numbers and in the case of coloured parts such as cabinets, etc. also quote the colour. Notes: The diagram represents the view from the wiring side of the printed board. Stipple area indicates printed wiring. Red indicates components and leads mounted on the remote side of the board. Black indicates those components and leads mounted on the wiring side or completely removed from the board. All voltages shown are negative with respect to the positive terminal of the battery and measured with no signal input and volume maximum clockwise using a 20,000 ohm/volt meter. Notes: The diagram represents the view from the wiring side of the printed board. Stipple area indicates printed wiring. Red indicates components and leads mounted on the remote side of the board. Black indicates those components and leads mounted on the wiring side or completely removed from the board. All voltages shown are negative with respect to the positive terminal of the battery and measured with no signal input and volume maximum clockwise using a 20,000 ohm/volt meter.