TECHNICAL INFORMATION AND SERVICE DATA # A.W.A. EIGHT TRANSISTOR PORTABLE Model B58 ISSUED BY AMALGAMATED WIRELESS (AUSTRALASIA) LTD. # GENERAL DESCRIPTION The B58 is an eight transistor, battery operated superheterodyne portable receiver designed for the reception of the Medium, Wave Broadcasting Band. This model incorporates separate R.F. and A.F. printed circuit boards and provision is made for battery saver operation and external aerial and earth connection. # ELECTRICAL AND MECHANICAL SPECIFICATIONS | Frequency Range | 525 - 1620 kHz | |-------------------------|----------------------------| | Intermediate Frequency | | | Battery Complement | 9 volts Eveready type 276P | | Battery Consumption: | | | For zero audio output | 14mA | | | 42mA | | For full audio output | 100mA | | | 53379 | | V.C. Impedance | 15 ohms at 400 Hz | | Controls: | | | Top — Tuning. | | | Centre — Volume, ON/OFI | | | Bottom — Tone. | | | Dimensions | | | Dimensions: | | | Height | 6 <u>5</u> " | | | 105" | | Denth | 2// | Weight 4 lbs, with battery # Transistor and Diode Complement: | AWV | AS300 | R.F. Amplifier | |-----|----------------|--------------------| | AWV | AS300 | Converter | | AWV | AS302 | 1st I.F. Amplifier | | AWV | AS300 | 2nd I.F. Amplifier | | AWV | 2N408 | Audio Amplifier | | AWV | AS311 or AS313 | Driver | | AWV | AS128 | Audio Output | | AWV | AS311 | Audio Output | | AWV | 1N87A | Overload Diode | | AWV | 1N87A | A.G.C. Diode | | AWV | IN87A | Detector Diode | | AWV | AS9 | Compensating Diode | | | | | ## **Drive Cord Replacement:** Fig. 1 shows the route of the cord and the method of attachment. ## EIGHT TRANSISTOR PORTABLE MODEL B58 #### Chassis Removal (Refer to Fig. 2.): Remove four chassis mounting screws marked "A". Unsolder aerial and earth leads at "B" and "C". Disconnect the speaker leads. The complete chassis assembly may now be lifted from the cabinet front. To gain access to the wiring side of the A.F. board, straighten the four mounting pins and lift the board clear of the chassis. Re-assembly is the reverse of the above procedure. However, take note of the following points: When replacing the four chassis mounting screws do not over-tighten them. Make sure that the battery lead clamp is replaced under the screw near the battery saver jack. #### Adjustment of Output Idling Current: An adjustment is provided in the audio board for controlling the output idling current. This adjustment is made during manufacture and need only be checked if any of the following conditions arise:— - 1. The receiver idling current at minimum volume is greater than $14\,\text{mA}.$ - 2. Cross-over distortion is present. - 3. Any transistor or resistor is replaced in the audio board. The adjustment is as follows:- Disconnect the red wander lead at the test point provided and insert an ammeter between the test point and wander lead. With the volume control set in its minimum (anti-clockwise) position, adjust RV101 to give a reading of 2.5 to 3mA on the meter. #### D.C. RESISTANCE OF WINDINGS | Winding | D.C. Resistance
in ohms | Winding | D.C. Resistance
in ohms | |------------------------------|----------------------------|----------------------------|----------------------------| | Ferrite Rod Assembly (TR1) | Funed Winding 2 | 2nd I.F. Transformer (TR5) | | | R.F. Transformer (TR2) | | Primary | 3 | | Primary
Secondary | 11
16 | Secondary | * | | Oscillator Transformer (TR3) | | 3rd I.F. Transformer (TR6) | | | Primary | A | Primary | 5 | | , | | Secondary | 5 | | 1st I.F. Transformer (TR4) | | · | | | Primary
Secondary | 5
5 | | | ^{*} Less than 1 ohm. The above readings were taken on components from a standard chassis, but substitution of materials during manufacture may cause variations and it should not be assumed that a component is faulty if a slightly different reading is obtained. #### MECHANICAL REPLACEMENT PARTS | Item | Part No. | Item | Part No. | |--|----------------|--|---| | Back, Assembly Cabinet Bracket, Speaker Mounting (2) Chassis, Moulded Circlip, Handle Retaining (2) Clamp, Battery Lead Drum Assembly, Gang Front Assembly, Cabinet: Comprising: | 211067 | Grommet (3) Screw, Ch./Hd. 4 BA x ¼" (3) Spacer (3) Washer, Flat, 4 BA (3) Handle Assembly Knob, Tone Knob, Tuning Knob, Volume Nut, Spire, Back Retaining (2) | 36826/002
714008
35923
15731
68836
68815
68813
68814
492148 | | Dial Scale Fret Assembly Front, Cabinet Gang Mounting: Gang Assembly | 68802
68505 | Pointer (2) Screw, Back Retaining (2) Spring, Drive Cord Speed Nut, Tuning Knob Retaining | 68816
760596
44189 | NOTE: When ordering spares, always quote the above Part Numbers, and in the case of coloured parts, such as knobs, etc., also quote the colour. Fig. 2 #### **Alignment Procedure:** Under no circumstances should the plates of the ganged tuning capacitor be bent, as the unit is accurately aligned during manufacture and can only be re-adjusted by skilled operators using special equipment. For all alignment operations, keep the generator output as low as possible to avoid a.g.c. action and set the volume control in the maximum clockwise position. ### **Testing Instruments:** Signal Generator — Modulated 400Hz or Modulated Oscillator. If the Modulated Oscillator is used, connect a 220K chms non-inductive resistor across the output terminals. Output Meter — 15 ohms impedance. I.F. Alignment Tool No. 39462. ## ALIGNMENT TABLE | ORDER | CONNECT "HIGH" SIDE OF GENERATOR TO: | TUNE GENERATOR
To: | TUNE RECEIVER
TO: | ADJUST FOR MAX.
PEAK OUTPUT: | |--------------|--|-------------------------|----------------------|---------------------------------| | 1 | R.F. Section of Gang | 455 kHz | Gang fully closed | Cores in TR6, TR5 and TR4 | | | stment until maximum output
Section of gang with a 2.2K o | | ı | 1 | | 2 | Inductively coupled to Rod
Aerial * | 1,620 kHz | Gang fully open | Osc. Trimmer (C11) | | 3 | Inductively coupled to Rod
Aerial * | 1,500 kHz | 1,500 kHz | Aerial Trimmer (C3) | | 4 | Inductively coupled to Rod
Aerial * | 600 kHz | 600 kHz | Osc. Core Adj. (TR3) † | | Repeat adjus | stments 2, 3 and 4 as require | d and then remove shunt | network. | | | 5 | Inductively coupled to Rod Aerial * | 600 kHz | 600 kHz | R.F. Core Adj. (TR2) | | 6 | Inductively coupled to Rod
Aerial * | 1,500 kHz | 1,500 kHz | R.F. Trimmer (C5) | | Repeat adju | stments 5 and 6 as required | | • | • | ^{*} A coil comprising 3 turns of 16 gauge D.C.C. wire, about 12" in diameter, should be connected between the output terminals of the test instrument, placed concentric with the rod aerial and distant not less than 1 foot from it. † Rock the tuning control back and forth through the signal. N.B.: At the completion of the alignment, turn the tuning control until a known local station is accurately received. If necessary slide the pointer along the drive cord until that station is accurately indicated. Turn the tuning control until the above pointer correctly indicates station 2CR (550kHz). As station 2CR appears on both scales, the other pointer may now be repositioned if necessary to ensure correct tracking on both sections. Notes: The diagram represents the view from the wiring side of the printed board. Blue indicates the printed wiring. Red indicates components and leads mounted on the remote side of the board. Black indicates those components and leads mounted on the wiring side or completely removed from the board. All voltages shown are negative with respect to the board earth (positive terminal of the battery) and measured with no signal input and volume maximum clockwise using a 20,000 ohm/volt meter. # CIRCUIT CODE | CODE | No. DESCRIPTION | PART No. | CODI | E No. | DESCRIPTION | PART No. | |---|---|----------------------------|--|--|---|--| | AII F
R1
R2
R3
R4
R5
R6
R7 | RESISTORS Resistors composition type unless otherwise 56K ohms $\pm 10\%$ $\frac{1}{2}$ watt 18K ohms $\pm 10\%$ $\frac{1}{2}$ watt 820 ohms $\pm 10\%$ $\frac{1}{2}$ watt Not used. 56K ohms $\pm 10\%$ $\frac{1}{2}$ watt 68K ohms $\pm 10\%$ $\frac{1}{2}$ watt 33K ohms $\pm 10\%$ $\frac{1}{2}$ watt | e stated. | C15
C16
C17
C18
C19
C20
C21
C22
C23
C24 | 16μf 1
16μf 1
330pf - | ±5% N750 disc ±20% 200VW AEE W99 ±20% 200VW AEE W48 0VW Electrolytic 0VW Electrolytic ±5% N750 disc ±20% 200VW AEE W99 ±20% 200VW AEE W99 10% N750 disc | 228878
228878 | | R8
R9
R10
R11
R12
R13
R14
R15
R16 | Not used. 56K ohms | | C25
C26
C27
C28
C29
C30
C31
C32
C101 | 0.01µf
0.04µf
4µf 10
400µf
0.005µf
0.22µf | ±5% N750 disc
±20% 200VW AEE W99
±20% 200VW AEE W99
VW Electrolytic
10VW Electrolytic
±20% 200VW AEE W99
+80%—20% 25VW Hi-K disc
±5% N3300 Tub | 228189
229786 | | R17
R18
R19 | 6.8K ohms $\pm 10\%$ $\frac{1}{2}$ watt | | C102
C103
C104 | 16μf 10
4μf 10 | OVW Electrolytic
VW Electrolytic
6VW Electrolytic | 228878
228189
229773 | | R20
R21
R101
R102 | 470 ohms $\pm 10\%$ $\frac{1}{2}$ watt 270 ohms $\pm 10\%$ $\frac{1}{2}$ watt Not used. | | C105
C106
C107 | 0.001µ1
320µf | +100%—20% K5000 disc
6VW Electrolytic
10VW Electrolytic | 229773
229786 | | R103
R104 | 3.3K ohms ± 10% ½ watt | | | | TRANSFORMERS | | | R105
R106
R107
R108
R109
R110
RV1
RV2
RV101 | Not used. 1.8K ohms $\pm 10\%$ $\frac{1}{2}$ watt 3.3K ohms $\pm 10\%$ $\frac{1}{2}$ watt 8.2K ohms $\pm 10\%$ $\frac{1}{2}$ watt 5.6 ohms $\pm 5\%$ $\frac{1}{2}$ watt 820 ohms $\pm 10\%$ $\frac{1}{2}$ watt 1.5K ohms $\pm 5\%$ $\frac{1}{2}$ watt 1.5J ohms $\pm 10\%$ $\frac{1}{2}$ $\frac{1}{2$ | 620205
620242
619962 | TR1
TR2
TR3
TR4
TR5
TR6 | R.F. Tra
Oscillat
1st I.F.
2nd I.F | Rod Assembly ansformer or Transformer Transformer Transformer Transformer Transformer Transformer | 54126
54144
52133
52772
54146
52798 | | ,
WA101 | | 013302 | VT1
VT2 | AWV
AWV | AS300
AS300 | | | C1
C2
C3
C4
C5
C6
C7
C8
C9 | CAPACITORS 330pf $\pm 5\%$ 125VW Polystyrene 10—200pf Tuning Aerial 3—12pf Trimmer Aerial 10—200pf Tuning R.F. 3—12pf Trimmer R.F. 0.04 μ f $\pm 20\%$ 200VW AEE W99 2.2pf $\pm 20\%$ NPO Disc 330 $\pm 10\%$ N750 Disc 0.01 μ f $\pm 20\%$ 200VW AEE W99 | 21378 | VT3
VT4
VT101
VT102
VT103
VT104
MR1
MR2
MR3
MR101 | AWV
AWV
AWV
AWV
AWV
AWV
AWV | AS302
AS300
2N408
AS311 or AS313
AS128
AS311
1N87A
1N87A
1N87A | | | C10
C11 | 10—87pf Tuning Oscillator
2—12pf Trimmer Oscillator | 21378
23001 | | | MISCELLANEOUS | | | C12
C13
C14 | $0.04~\mu f \pm 20\%$ 200VW AEE W99 $0.005 \mu f \pm 20\%$ 200VW AEE W99 330pf $\pm 5\%$ N750 disc | | JK101
LS101
PL101 | Speaker | Saver Jack
6" x 4"
Plug | 417405
53379
34623 |