RADIOLA EIGHT TRANSISTOR PORTABLE MODEL B17

RADIOLA EIGHT TRANSISTOR MANTEL MODEL B18

ISSUED BY AMALGAMATED WIRELESS (AUSTRALASIA) LTD.

GENERAL DESCRIPTION

Model B17 is an eight transistor, battery-operated, superheterodyne portable receiver designed for the reception of the Medium Wave Band.

Model B18 is an eight transistor, battery-operated, superheterodyne mantel receiver designed for the reception of the Medium Wave Band.

Features of design include:
Ferrite rod aerial with provision for external aerial; high-gain i.f. transformers; Autodyne converter; high sensitivity; centre-tapped 80 ohms impedance speaker obviating the need of an output transformer.

ELECTRICALAND MECHANICALSPECIFICATIONS

Transistor Complement:

AWV 2N374 or 2N1636	Con
AWV 2N406	Overload
AWV 2 N 373 or 2 N 1634	1st I.F. Amplifier
AWV 2N373 or 2N1634	2nd I.F. Amplifier
AWV 2N406	1st Audio
AWV 2N408	
AWV 2N217S	Outp
AWV 2N217S	Outp

A diode (1N295) is also used as Audio Detector and A.V.C.

Dimensions:							
Height	\ldots	\ldots	\ldots	\ldots	$5 \frac{1}{2}^{\prime \prime}$	$4 \frac{3}{4}^{\prime \prime}$	Mantel
Width	\ldots	\ldots	\ldots	\ldots	$93_{4}^{\prime \prime}$	$9 \frac{1}{4}^{\prime \prime}$	
Depth	\ldots	\ldots	\ldots	\ldots	$3 \frac{1}{2}^{\prime \prime}$	$34^{\prime \prime}$	
Weight (with battery)	\ldots	4 lbs.	3 lbs .9 ozs.				

Service Notes for Transistor Receivers:

Whilst transistors, when used within the manufacturer's ratings, should give considerably longer life in service than vacuum tubes, the following precautions should be observed when servicing receivers to prevent damage to transistors.

Transistors can be damaged when checking circuit continuity by the D.C. voltage present in an ohmmeter. To avoid damaging a transistor or getting a misleading resistance reading the transistors must be disconnected from the circuit.

The use of screwdrivers as a means of checking high tension, as is commonly done in mains operated receivers, is not only a waste of time but can permanently damage the transistors. Similarly, the indiscriminate shorting out of bias resistors as a means of checking whether certain stages are operating will almost certainly have drastic results, particularly in the output stages.

Transistors are extremely sensitive to heat, temperatures in excess of $90^{\circ} \mathrm{C}$. can cause permanent damage. Great care should therefore be exercised when soldering transistor leads, keeping the soldering iron as far away from the transistor body as practicable and applying heat for as short a time as possible.

It should be noted that all electrolytic capacitors have their positive terminal going to earth or to the earthy part of the circuit.

Fault Finding:

The first thing to check when the receiver is inoperative is the battery. With the receiver switched on a new battery should measure 9 volts, although a receiver will still operate satisfactorily at 6 volts.

Voltmeters used for test purposes must be at least 20,000 ohms per volt. The use of low impedance meters will only give misleading results as serious shunting effects will occur.

If the receiver is inoperative to R.F. and the converter is suspect, the oscillator can be checked by measuring the voltage between base and emitter of the converter. If the base is negative with respect to the emitter by more than 0.12 volts then the converter is not oscillating.

When checking for a circuit fault causing excessive battery drain, an overall current measurement and supplementary voltage measurements should be made. For reasons stated above continuity measurements can be misleading.

Signal tracing by injection of a signal from a signal generator is carried out on transistor radios in exactly the same manner as has been done for many years with conventional vacuum tube radios. The signal generator should be connected (as in past practice) in series with a capacitor to avoid shorting out bias voltages. With the transistors used in this receiver, the BASE is the signal input terminal (corresponding to the signal grid of vacuum tubes), the COLLECTOR is the signal output terminal (corresponding to plate), and the EMITTER is the common terminal (corresponding to the cathode).

The output circuit used in this receiver is of the "Class B" type; this type of output circuit has seldom been used in commercial radios for the past several years. It should therefore be noted that in "Class B" output the battery current increases greatly with increased signal input to the base.

Component Removal and Replacement:

Always use a soldering iron which is very clean and just hot enough to achieve a quick soldering operation as prolonged application of heat will damage the printed wiring.

Before installing a replacement component, it is advisable to clear the contact hole by heating the contact area and pushing a tapered stainless steel wire into the hole. Small screwdriver kits are available on the market containing a suitable spiked bit.

To remove an I.F. transformer or oscillator coil it is desirable to have a suitable tip on the soldering iron as shown in Fig. 1. All seven connections on the transformer may be freed simultaneously and the transformer pulled from the board. This is the only satisfactory method: any other method using smaller irons will generally result in damage to either the board or the transformer or to both.

Transistors may be removed in a similar manner to the I.F. transformers using the $\frac{3^{3}}{1^{\prime \prime}}$ bit on the ORYX iron.

The coupling transformer may be removed by first disconnecting the five leads and then moving each mounting lug by approximately $\frac{1}{32}^{\prime \prime}$ at a time until both lugs are free.

Fig 1-Soldering Bit and I.F. Removal.

CHASSIS REMOVAL

PORTABLE MODEL

Remove the volume control knob, this being a push-on. fit.

Remove the tuning knob locking screw and remove the tuning knob.

Open the cabinet back and remove the battery.
Unsolder the two leads from the aerial socket to the ferrite rod aerial.

Remove the four nuts securing the corners of the chassis to the cabinet.

With firm pressure from the front of the cabinet against the gang spindle, free the pointer disc from the spindle and remove the chassis.

MANTEL MODEL

Remove the volume control knob which is a push-on fit.
Remove the tuning knob locking screw and remove the tuning knob.

Remove the two retaining screws in the back of the cabinet and the two screws underneath the cabinet.

Remove the cabinet back and then the four nuts securing the corners of the chassis to the front panel.
With firm pressure from the front of the cabinet against the gang spindle, free the pointer disc from the spindle and remove the chassis.

Installation in both models is the reverse of the above procedures.

When replacing the pointer disc, turn the gang fully clockwise and screw the disc on with a clockwise rotation. When fully on, align the indicating line across the arrow heads on the dial scale.

Replace the tuning knob and secure it with the locking screw without disturbing the pointer setting.

Switch the receiver on and tune to some known stations. The pointer should fall across the centre of the station markings. If it does not, remove the tuning knob, readjust the pointer to accommodate the error and reassemble the knob.

ALIGNMENT PROCEDURE

Manufacturer's Setting of Adjustments:

The receiver is tested by the manufacturer with precision instruments and all adjusting screws are sealed. Re-alignments should be necessary only when components in tuned circuits are repaired or replaced or when it is found that the seals over the adjusting screws have been broken. It is especially important that the adjustments should not be altered unless in association with the correct testing instruments listed below.

Under no circumstances should the plates of the ganged tuning capacitor be bent, as the unit is accurately aligned during manufacture and can only be re-adjusted by skilled operators using special equipment.

For all alignment operations, keep the generator output as low as possible to avoid A.V.C. action and set the volume control in the maximum clockwise position.

Testing Instruments:

(1) A.W.A. Junior Signal Generator, type 2R7003; or
(2) A.W.A. Modulated Oscillator, series J6726.

If the modulated oscillator is used, connect a .22 megohms non-inductive resistor across the output terminals.
(3) No output transformer is used in this receiver since the speaker has a centre tapped 80 ohm voice coil and is connected directly to the collectors on the output transistors. For output measurement, if an indication only is required, Output Meter type 2M8832, switched to 5000 ohms and connected across the output collectors, should be adequate. For correct reading of power output an A.C. meter, with neither probe earthed, connected across the output collectors will measure the voltage across the 80 ohms load. The normal alignment level of 50 mw occurs when 1.4 volts is indicated on the A.C. voltmeter.

ALIGNMENT TABLE

ORDER	CONNECT "HIGH" SIDE OF GENERATOR TO:	TUNE GENERATOR TO:	Tune Receiver to:	ADJUST FOR MAX. PEAK OUTPUT
1	Aerial section of Gang	$455 \mathrm{Kc} / \mathrm{s}$	Gang fully closed	Cores in TR5, TR4 and TR3

Repeat adjustment until maximum output is obtained

2	Inductively coupled to Rod Aerial*	$600 \mathrm{Kc} / \mathrm{s}$	$600 \mathrm{Kc} / \mathrm{s}$	L.F. Osc. Core Adj. (TR2) \dagger
Remove shunt resistor on R.F. section				
3	Inductively coupled to Rod Aerial*	1,650 Kc/s	Gang fully open	H.F. Osc. Adj. (C4)
4	Inductively coupled to Rod Aerial*	1,500 Kc/s	1,500 Kc/s	H.F. Aerial Adj. (C3)

[^0]

Circuit Variations.

To reduce the effect of noisy volume controls:-
C23 has been changed to a $0.25 \mu \mathrm{f} \pm 20 \% 200$ VW Hunts W48 capacitor 229007 positioned from wiper arm to earth.
C33 a $4 \mu \mathrm{f} 4 \mathrm{VW}$ Electrolytic 228189 has been added from VT5 emitter to earth.
On early production receivers R 31 was missing and C 15 was an $0.01 \mu \mathrm{f}+80 \%-20 \% \mathrm{~K} 6000$ rectangular capacitor 226352.

CIRCUIT CODE—RADIOI.A PORTABLE B17—MANTEL B18

COMPONENT LOCATION

VOLTAGE CHART

All voltages negative with respect to printed circuit earth (positive terminal of battery).

The assemblies represented above are viewed from the wiring side of the board.
The printed wiring, on the near side of the board, is presented in phantom view superimposed on the component layout of the reverse side.

MECHANICAL REPLACEMENT PARTS

Item	Part No. Portable	Mantel	Item	Part No. Portable	Mantel
Case, Leather	60218		Knob Assembly, Volume	61460	60925
Case, Moulded		60217	Label, Layout	60355	60355
Dial Scale Assembly	60930	60930	Plug, Battery	34625	34625
Door, Battery		60932	Pointer Disc Assembly	60928	60928
Fret, Front Moulded	60923	60923	Screw, Knob Mounting	60931	60931
Knob Assembly, Tuning	60922	60922	Strap, Carrying	61459	

NOTE: When ordering, always quote the above Part Numbers. In the case of coloured parts, such as knobs, also quote the colour.

D.C. RESISTANCE OF WINDINGS

Winding	D.C. Resistance	Winding	D.C. Resistance
Aerial Choke LI: ...	1	1st, 2nd and 3rd I.F. Transformers:	
Ferrite Rod Assembly TR1:		Primary	1.5
Primary 1-2 ${ }^{\text {S }}$	1.5	Secondary	*
Secondary 6-7 Tertiary 4-5		Secondary	
		Coupling Transformer:	
Oscillator Transformer TR2: Primary 3-5	1.2	Primary	540
Secondary 1-4		Secondary	. 540

[^1]
[^0]: * A coil comprising 3 turns of 16 gauge D.C.C. wire and ab out 12 inches in diameter should be connected between the output terminals of the test instrument, placed concentric with the rod aerial and distant not less than 1 foot from it.
 \dagger Rock the tuning control back and forth through the signal.

[^1]: * Less than 1 ohm.

 The above readings were taken on a standard chassis, but substitution of materials during manufacture may cause variations and it should not be assumed that a component is faulty if a slightly different reading is obtained.

