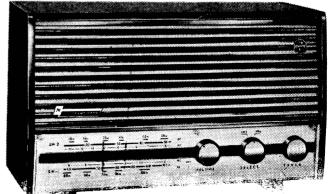


- SPECIFICATIONS

Frequency Range : SW_1 2 \sim 6 MC (150 \sim 50m) SW_2 6 \sim 18 MC (50 \sim 16.6m)

Intermediate Frequency: 455 KC


Sensitivity: $SW_1 = 50 \mu V / 10 mW$

SW₂ $80 \mu V / 10 mW$ 300mW, undistorted

Power Output: 300mW, undistorted 450mW, maximum

Batteries : Six No. 1 flashlight dry cells $1.5V \times 6 = 9V$

Speaker: 5" PM dynamic speaker

ALIGNMENT PROCEDURE

OUTPUT METER Connect Output Meter across speaker voice coil terminals.

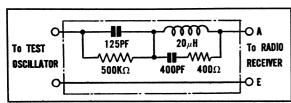
OUTPUT LEVEL Attenuate Test Oscillator output always to maintain 0.5 volts on Output Meter

to prevent overloading of the receiver.

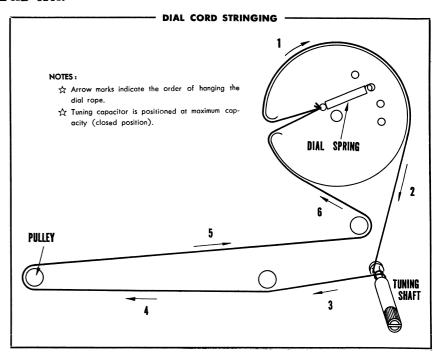
TEST OSCILLATOR Modulate Test Oscillator at 400 c/s and connect the earth lead wire of Test

Oscillator output to receiver chassis board. Adjust the output of Test Oscillator

so as to read the output of the radio receiver at around its maximum volume.

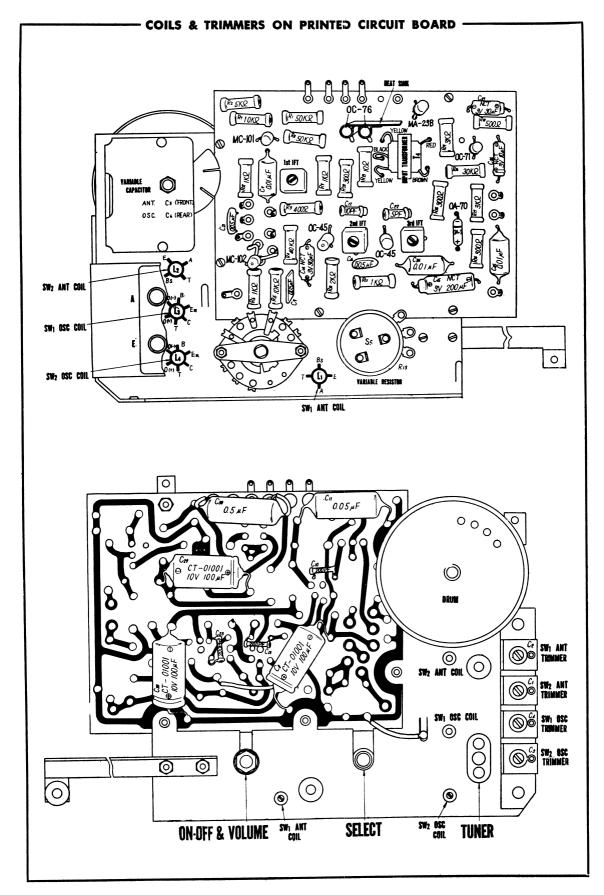

Frequency Alignment of Dial Scale

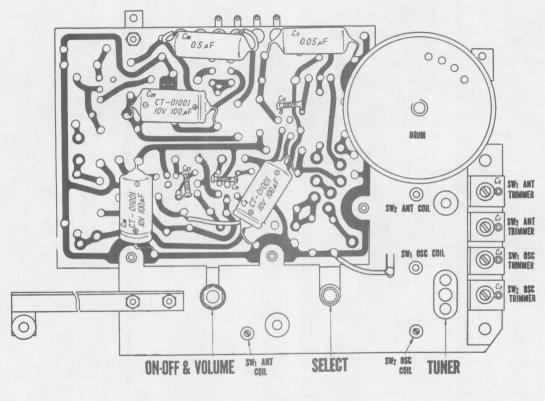
SW ₁ Band		SW ₂ Band	
r.equency	Distance	Frequency	Distance
2.2 MC	17.9 cm	7 MC	24.4 cm
5.5 MC	95.8 cm	16 MC	91.7 cm


TABLE

Band		Test Oscillator		Radio Receiver	
Step	tep Switch Position	Connection to radio receiver	Dial setting	Dial setting	Adjusting to maximum output
1	SW ₁	"ANT" terminal in series with 0.1MFD	455KC	Quiet point	Top screws of IF transformers
2		Through dummy antenna in series with "ANT" terminal	2.2MC	2.2MC	Screw of SW ₁ OSC coil Screw of SW ₁ ANT coil
3			5.5 M C	5.5MC	Screw of SW ₁ OSC trimmer Screw of SW ₁ ANT trimmer
4			2.2MC & 5.5MC	2.2MC & 5.5MC	Repeat steps (2) and (3)
5			7MC	7MC	Screw of SW ₂ OSC coil Screw of SW ₂ ANT coil
6			16MC	16MC	Screw of SW ₂ OSC trimmer Screw of SW ₂ ANT trimmer
7			7MC & 16MC	7MC & 16MC	Repeat steps (5) and (6)
8	Check if	the above dial setti	ngs for SW bands	are not made at i	image frequencies.

Dummy Antenna (All-wave type)




20μH: Make up a 45 turn, ½" diameter bobbin, using 0.2φmm insulated wire.

MAIN PARTS LIST

Symbol	Parts Name or No.	Description	
Capacitors			
$C_1 \sim C_4$	4-section trimmer capacitor, #2214	B 3∼25PF	
C ₅ C ₆	2-section variable capacitor, 2HC-43B.4	5 12~430PF	
C ₇	Tubular capacitor, PAR-4103	WV400V 0.01MFD	
C_8	Electrolytic capacitor, CT-01001	WV10V 100MFD	
C_0	Ceramic capacitor, 0.05MFD	$^{+100\%}_{-$	
C ₁₀	Ceramic capacitor, 200PF	± 10%	
C ₁₁	Tubular capacitor, PAR-4503	WV400V 0.05MFD	
C12	Ceramic capacitor, 10PF	± 20%	
C ₁₃	Ceramic capacitor, 500PF	± 5%	
C ₁₄	Electrolytic capacitor, NCT3V 30	WV3V 30MFD	
C ₁₅	Electrolytic capacitor, NCT3V200	WV3V 200MFD	
C ₁₆	Ceramic capacitor, 0.05MFD	$^{+100\%}_{-0\%}$	
C17	Styrol capacitor, 1500PF	± 10%	
C18	Styrol capacitor, 4500PF	± 10%	
C ₁₀	Ceramic capacitor, 445PF	± 5%	
C20	Ceramic capacitor, 120PF	± 5%	
C ₂₁	Ceramic capacitor, 0.05MFD	+100% - 0%	

