SERVICE BENCH ALIGNMENT DATA AND PROCEDURE - BROADCAST BAND.

Signal Frequency Coverage - 530 KC/S to 1,600 KC/S.

Oscillator Frequency - Higher than signal frequency by the I.F.

Intermediate Frequency - 455 KC/S.

Alignment Points - (a) 600 KC/S

- (b) 900 KC/S

- (c) 1,400 KC/S

Receiver Sensitivity - Equal to or better than 1 microvolt for standard output across a 10.000 ohm load.

PROCEDURE

REQUIREMENTS

- 1. Standard signal generator or good quality modulated oscillator
- 2. Standard dummy acrial.
- 3. .01 uf mica condenser.
- 4. Output meter.

CONDITIONS.

Receiver mounted in case with top and bottom lids removed. Volume control full on. Tone control fully clockwise. Noise limiter, switched to "OFF". Wave-change switch at "Broadcast" position.

Output meter connected across primary of speaker transformer.

METHOD. - I.F. ALIGNMENT.

- 1. Turn tuning condenser till plates are fully out of mesh.
- 2. Without disconnecting grid lead, connect signal generator to control grid of 65K7GT. I.F. tube via. .01 uf mica condenser.
- 3. Set signal generator to 455 KC/S.
- 4. Align primary and secondary trimmers of 2nd I.F. transformer for maximum deflection as indicated on output meter, and progressively reducing output from signal generator to minimum necessary for reasonable indication on meter.
- 5. Remove signal generator lead from I.F. tube, and connect via col uf mica condenser to control grid of ECH33, leaving grid cap still connected.
- 6. With signal generator still at 455 KC/S, align 1st. I.F. primary and secondary slugs for maximum deflection as indicated on output meter, and progressively reducing output still further from signal generator to minimum necessary for reasonable indication on output meter.
- 7. With signal generator still connected to control grid of ECH33, re-align 2nd I.F. primary and secondary trimmers for maximum meter indication, and then 1st. I.F. primary and secondary trimmers, still keeping output from signal generator at lowest convenient level.
- 8. Having completed alignment of I.F. transformers, swing signal generator frequency above and below 455 KC/S to ensure that I.F. response curve is symmetrical on either side of 455 KC/S.
- 9. Disconnect signal generator from ECH33.

FERRIS CAR RADIO MODEL 74

Sarial Numbers to and Including 12800:

Refer to the circuit diagram dated 8.9.47 and the component list which forms the next page to that diagram in this Manual. In sets with Serial Numbers between 12201 and 12800 the R.F. amplifier valve was a 6K7 metal or 6K7GT.

Serial Numbers from 12801 to 14900:

No circuit diagram or list of components is published for these receivers but they were similar to the earlier series with the following exceptions:-

(a) Valve Complement

V1 - 6N8

V2 - 6AN7

V3 - 6N8

V4 - 6BD7 V5 - 6V6GT

V6 - 6X5GT

(b) <u>Circuit Alterations</u>: Grid bias is obtained from the oscillator grid leak from the junction of a voltage divider network formed by a lOK ½ w. resistor connected between the cold end of the 50K oscillator grid leak resistor and chassis. This bias is applied to the R.F., Converter and I.F. valves. A.V.C. voltage is not applied to the I.F.Valve.

Serial Numbers Higher than 14900: Refer to the circuit diagram marked thus together with its Component List.

Speakers: Three types of speakers were used in Model 74 receivers.

- (1) Rola 5C, Mngnavox 5 inch and Kingsley 5 inch: In the case of speaker failure replace with Rola 5C. Kingsley and Magnavox.5 inch speakers are no longer manufactured or repaired by the makers.
- (2) Jensen AC42: Where this type is used only a Jensen AC42 may be used for replacement purposes. The AC42 is a type made specially for Ferris Brothers.
- (3) Magnavox 525 (Serial Numbers above 12800) This should be replaced wherever possible with the same type but a Jensen AC42 uses the same mounting centres and may be used when the Magnavox type is not available. No shortage of Magnavox 525 speakers is anticipated.
- Suggested Modification to all Receivers: Mechanical hum from vibrators may be reduced by strapping the vibrator can to the adjacent switch bracket with a soldering lug. Many receivers have already been treated in this manner during manufacture.
- Suggested Modification to Receivers With Serial Numbers below 12801: For quieter "between station" operation apply a small standing bias to the R.F., converter and I.F. amplifier stages in the following manner: Lift the earthed end of R3 (oscillator grid leak resistor) and insert a 10 $K\frac{1}{2}$ w. resistor between it and chassis. Lift the earthed end of the AVC diode load resistor R5 from chassis and connect to the junction of the voltage divider network thus formed.

Thus the bias developed across the 10 K resistor or one sixth of the total oscillator grid bias, will be applied to the A.V.C. line under "no signal" conditions.

The receiver should be realigned after this change has been carried out.

Alignment Procedure: All a lignment procedure should be carried out with Volume Control set to maximum and Tone Control in treble position. The carrier input should be modulated 30%. All adjustments listed below are made for maxium output indiction.

LIST OF COMPONENTS

FERRIS CAR RADIO - MODEL 74.

(SERIAL NUMBERS HIGHER THAN 14900)

COMDENSERS

CONDENSERS

	50 PF mica .05 mfd x 200 v. tubular		8 mfd x 525 P.V. electrolytic .lmfd x 200 v. tubular
	.05 mfd x 200 v. tubular		.25 mfd x 200 v. tubular
-	.05 mfd x 200 v. tubular		8 mfd x 525 P.V. electrolytic
C5	.05 mfd x 200 v. tubular		.01 mfd x 600 v. tubular
ç6 -	100 PF mica	C20 -	.01 mfd x 600 v. tubular
C7 -	.1 mfd x 200 v tubular	C21 -	.05 mfd x 200 v. tubular
C8 -	100 PF mica	C22 -	.05 mfd x 200 v. tubular
	250 PF mica	C23 -	. 5 mfd x 200 v. tubular
ClO -	.005 mfd x 600 v mica or tubular	C24 -	. 5 mfd x 200 v. tubular
Cll -	.01 mfd x 600 v tubular	C25 -	.001 mfd mica
C12 -	50 P.F. mica	C26 -	.001 mfd mica
Cl3	500 P.F. mica	C27 -	100 P.F. mica
C14	.05 mfd x 200 v tubular		a .

RESISTORS.

RESISTORS

Rl	_	250 K ½ w	R10 -	10 M lw.
E 2		47 K 1 w	Rll -	250 K 🚽 w.
$\mathbb{R}3$		47 K l w	R12 -	50 K ton control pot.
R4	-	47 K l w		.5 M 날w.
R5	-	· l M ½ w		.5 M ½w.
R6	_	1 M. 🔓 w		250 K 🖟 w.
R7	-	47 K Î w		50 Ohm ½w.
R8		l M ½ w	R17 -	50 ohm žw.
R9	_	250 K volume control pot.		250 K $\frac{1}{2}$ w.

INDUCTANCES

INDUCTANCES

Ll	_	Aerial Choke - Part No. RP125	L4 -	Oscillator coil - 455 KG Part No RP106
L2 L3	-	Aerial Coil - Part No. RP104 R.F. Coil - Part No. R.P. 105	L5)- L7)-	Low tension double choke - Part No. R.P. 122.
				Low tension single choke - Part No. R.P. 120.

TRATSFORMERS

Tl		I.F. Transformer - 455 K.C. first - Part No. R.P. 108
T2	-	I.F. Transformer - 455 K.C. second - Part No. R.P. 109
Т3	-	Speaker Transformer - 7000 ohm - Type No. 65
T4	-	Vibrator Transformer - 6 volt - Part No R.P.152
		12 volt - Part No. R.P. 153

SWITCHES.

S1, S2, S3 - 3 pole 3 position Oak - Part No. R.P. 163.

VALVES	E V	VAL	VES	
Vl 6 N8		V4	_	6BD7
V2-6 AN7		V5	_	6V6GT
V3-6 N8		٧6	_	6X5GT

LIST OF COMPONENTS

FERRIS CAR RADIO - MODEL 74

CONDENSERS

CONDENSERS

C 1 - 50 P.F. mica	C 15 - 50 P.F. Mica (shown incorrect
0.2 = .05 mfd x 200 v. tubular	in circuit - should connect
C 3 - 5 plate padder	between plate and control grid
C 4 - delete	of 6 v 6 GT)
C 5 - 100 P.F. mica	C 16 - 8 mfd. x 525 P.V. electrolytic
C 605 mfd. x 200 v. tubular	C 175 mfd. x 200 v. tubular
0705 mfd. x 200 v. tubular	C 18 - 8 mfd. x 525 P.V. electrolytic
C 8 - 100 P.F. mica	C 1905 mfd. x 200 x, tubular
C 9005 mfd. mica or tubular	C 2001 mfd. x 2000 v. tubular
C 10 - 250 P.F. mica	0 215 mfd. x 200 v tubular
0 1101 mfd. x 600 v. tubular	C 225 mfd. x 200 v. tubular
C 12 - 250 P.F. Mica	C 23001 mfd. mica
C 13 - 25 mfd. x 40 P.V. electrolytic	C 24001 mfd. mica
C 1405 mfd. x 200 v. tubular	0 25 - 100 P.F. mica
(incorrect in circuit - should	
show between plate of 6V6GT	
to RoTa)	

RESISTORS

RESISTORS

		the first of the second
R 1 - 240 K ½ W /	R 9 🗕	500 K 2 W
R 2 - 50 K = W ~	R 10 -	500 ohm 🔒 1
R 3 - 50 K = W /	R 11 -	
R4 - 1M #W	R 12 -	delete
R 5 - 1 M Å W 🗸	R 13 -	50 ohm 🚽 W
R 6 - 250 K volume control		50 К 🗦 Ѿ
R7 - LOMIW	RT -	50 K pat. (tone control)
N 8 2250 K W (incorrect in circuit		
connects between plate of		
GT and B plus)		
Service and the service and th		

INDUCTANCES

- 7		Aerial coil - Part No. RP 104
O I	_	BOTTAL COME - 1 at 1 NOS IN MOS
		R. F. Coil - Part No. RP 105
I 3		Oscillator Coil - 455 K.C Part No. RP 106
14	*****	High tension R.F. choke
I 5	-	Iron cored H.T. filter choke - Part No. PP 157
L 6)	-	Low tension double choke - Part No. RP 122
L 8)	> 1	por remark de marche and
I. 7		Low tension single choke - Part No. RP 120

TRANSFOLMERS

```
T1 - I.F. Transformer - 455 K.C. first - Part No. RP 108
T2 - I.F. Transformer - 455 K.C. second - Part No. RP 109
T3 - Speaker transformer 5000 ohms
- Vibrator Transformer 5000 volt - Part No. RP 152
```

SWITCHES

S 1, S 2, S 3 - 3 pole 3 position switch .- Mart No. R.P. 163.

CVAND"