Medium-Mu Twin Triode

9-PIN MINIATURE TYPE

GENERAL DATA

Electrical:

Heater Characteristics and Ratings (Design-Center Values):

Voltage (AC or DC) 6.3 ± 0.6 volts
Current at heater volts = 6.3 0.300 amp
Peak heater-cathode voltage [Each unit]:
Heater negative with respect to cathode 60 max. volts
Heater positive with respect to cathode 120 max. volts

Direct Interelectrode Capacitances:

<table>
<thead>
<tr>
<th>Unit No. 1</th>
<th>Unit No. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid to plate 1.4</td>
<td>1.4 µf</td>
</tr>
<tr>
<td>Grid to cathode, internal shield, and heater 3.1</td>
<td>3.1 µf</td>
</tr>
<tr>
<td>Plate to cathode, internal shield, and heater 1.75</td>
<td>1.65 µf</td>
</tr>
<tr>
<td>Heater to cathode 2.6</td>
<td>2.7 µf</td>
</tr>
</tbody>
</table>

Characteristics, Class A1 Amplifier (Each Unit):

Plate Supply Voltage 100	90 volts
Grid Supply Voltage 9	0 volts
Cathode Resistor 680	120 ohms
Amplification Factor 33 -	
Transconductance 12500	11500 µmhos
Plate Current 15	12 ma

Mechanical:

Operating Position Any
Type of Cathodes Coated Unipotential
Maximum Overall Length 2-3/16"
Maximum Seated Length 1-15/16"
Length, Base Seat to Bulb Top [Excluding tip] 1-9/16" ± 3/32"
Diameter 0.750" to 0.875"
Dimensional Outline See General Section
Bulb TS6-1/2
Base Small-Button Noval 9-Pin (JEDEC No.E9-1)
Basing Designation for BOTTOM VIEW 9AJ

Pin 1 - Plate of Unit No.2
Pin 2 - Grid of Unit No.2
Pin 3 - Cathode of Unit No.2
Pin 4 - Heater
Pin 5 - Heater

Pin 6 - Plate of Unit No.1
Pin 7 - Grid of Unit No.1
Pin 8 - Cathode of Unit No.1
Pin 9 - Internal Shield
AMPLIFIER — Class A1

Values are for Each Unit

Maximum Ratings, Design-Center Values:

PLATE VOLTAGE:
- With plate dissipation = 0.8 watt or greater.......................... 220 max. volts
- With plate dissipation less than 0.8 watt................................. 250 max. volts
- With plate ma. = 0... 400 max. volts
- With cathode ma. = 0.. 550 max. volts

GRID VOLTAGE:
- Negative-bias value.. 100 max. volts
- Peak-negative value... 200 max. volts

CATHODE CURRENT:
- Peak ... 100 max. ma
- Average.. 20 max. ma

GRID INPUT.. 0.03 max. watt

PLATE DISSIPATION:
- Either plate... 1.5 max. watts
- Both plates (Both units operating)... 2 max. watts

BULB TEMPERATURE (At hottest point on bulb surface)........... 170 max. °C

Maximum Circuit Values:

Grid-Circuit Resistance:
- For fixed-bias operation... Permitted only when plate ma. < 5 ma.
- For cathode-bias operation...................................... 1 max. megohm

a Without external shield.
b Operation under conditions listed in left-hand column is recommended because of the small spread in characteristics.
c Pulse duration (microseconds) = 200 max., duty factor = 0.10 max.

SPECIAL RATINGS & PERFORMANCE DATA

Shock Rating:

Impact Acceleration ... 500 max. g

This test is performed on a sample lot of tubes from each production run to determine ability of tube to withstand the specified impact acceleration. Tubes are held rigid in four different positions in a Navy Type, High-impact (Flyweight) Shock Machine and are subjected to 5 blows at a hammer angle of 30°.

Fatigue Rating:

Vibrational Acceleration.. 2.5 max. g

This test is performed on a sample lot of tubes to determine ability of tube to withstand the specified vibrational acceleration. Tubes are rigidly mounted and are subjected for 52 hours to 2.5-g vibrational acceleration at 50 cycles per second in each of three directions.