TECHNICAL INFORMATION AND SERVICE DATA # A.W.A. RADIOLA TELEVISION RECEIVER Models 201-T, 202-C and 203-T (17 inch, 23 Valves, A.C. Operated) Issued By Amalgamated Wireless (Australasia) Ltd. ### GENERAL DESCRIPTION The Models 201-T, 202-C and 203-T are "17 inch," 23 valves, A.C. Operated Television Receivers. Features of design include: Inter-carrier F.M. system, Ratio Detector, Aluminised Kinescope, Amplified A.G.C., A.F.C. Horizontal Hold, Twin Loudspeakers. ### ELECTRICAL AND MECHANICAL SPECIFICATIONS PICTURE SIZE: Approximately 154 sq. ins. on a 17HP4B Kinescope. TELEVISION CHANNELS: All 10 V.H.F. channels. (Refer Alignment Procedure) ### INTERMEDIATE FREQUENCIES | Video I.F. | Carrier | Frequency |
36.0 | Mc/s | |------------|---------|-----------|----------|------| | Sound I.F. | Carrier | Frequency |
30.5 | Mc/s | POWER CONSUMPTION: 200 watts max. UNDISTORTED AUDIO POWER OUTPUT: 2.5 watts max. ### LOUDSPEAKERS- ### MODELS 201-T and 203-T: 7" x 5" Permanent Magnet No. 21034 and 7" x 5" Permanent Magnet No. 21045. Transformer No. 21092. V.C. Impedance of combination. 6-8 ohms at 400 c/s. ### MODEL 202-C: 9" x 6" Permanent Magnet No. 21519 and 9" x 6" Permanent Magnet No. 21520. Transformer No. 21092. V.C. Impedance of combination. 6-8 ohms at 400 c/s. ### VALVE COMPLEMENT: | (1) | Radiotron | 6BQ7A R.F. Amplifier | |------|-----------|---| | (2) | Radiotron | 6U8 R.F. Oscillator and Converter | | (3) | Radiotron | 6AU6 1st Sound I.F. Amplifier | | (4) | Radiotron | 6AU6 2nd Sound I.F. Amplifier | | (5) | Radiotron | 6AL5 Ratio Detector | | (6) | Radiotron | 6AV6 A.F. Amplifier and A.G.C. Clamp | | (7) | Radiotron | 6AQ5 A.F. Output | | (8) | Radiotron | 6AU6 1st Video I.F. Amplifier | | (9) | Radiotron | 6CB6 2nd Video I.F. Amplifier | | (10) | Radiotron | 6CB6 3rd Video I.F. Amplifier | | (11) | Radiotron | 6CB6 4th Video I.F. Amplifier | | (12) | Radiotron | 6AL5 Video Detector | | (13) | Radiotron | 12BY7 Video Amplifier | | (14) | Radiotron | 6CB6 A.G.C. Amplifier | | (15) | Radiotron | 6SN7GTA Vertical Sync. Separator and Horizontal Sync. Separator | (16) Radiotron 6SN7GTA Sync. Amplifier and (17) Radiotron 6AQ5 Vertical Output (18) Radiotron 6SN7GTA Horizontal Control and (19) Radiotron 6BQ6GTB/6CU6 Horizontal Output (20) Radiotron 6AX4GT Damper (21) Radiotron 1B3GT High Voltage Rectifier (22) Radiotron 5AS4 Rectifier (23) Radiotron 17HP4B Kinescope Vertical Oscillator Horizontal Oscillator | AERIAL INPUT IMPE
Choice—300 ohm | DANCE
s balanced, or 72 ohms unbalanced. | NON-OPERATING CONTROLS (not including R.F. and I.F. adjustments) | |--|---|--| | VIDEO RESPONSE | To 4.25 Mc/s | Height screwdriver adjustment under front panel | | | Electrostatic (Low Voltage) | Vertical Linearity screwdriver adjustment under front panel | | SCANNING | Interlaced, 625 lines | Horizontal Drive rear chassis adjustment | | HORIZONTAL SCANN | ING FREQUENCY 15,625 c/s | Horizontal Sine Wave top chassis adjustment | | VERTICAL SCANNING | FREQUENCY 50 c/s | Horizontal Linearity rear chassis adjustment | | PICTURE REPETITION | RATE 25 per second | Width rear chassis adjustment | | OPERATING CONTRO | DLS: | A.G.C. Control rear chassis adjustment | | Channel Selector
Fine Tuning | Concentric. | Focus rear chassis adjustment | | Power/Volume
Brightness | Concentric. | Picture Centring above chassis adjustment | | Contrast | | Deflection Yoke above chassis adjustment | | Horizontal Hold
Vertical Hold
Tone | Single Controls under Front Panel. | Ion Trap Magnet above chassis adjustment | ### HIGH VOLTAGE WARNING OPERATION OF THIS RECEIVER OUTSIDE THE CABINET INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED. MAKE SURE THAT THE EARTH STRAP BETWEEN THE CHASSIS AND THE KINESCOPE ASSEMBLY IS SECURELY FASTENED BEFORE TURNING THE RECEIVER ON. ### KINESCOPE HANDLING PRECAUTIONS DO NOT INSTALL, REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTER-PROOF GOGGLES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING. When the receiver has been switched off after operating for a time, the kinescope will retain a certain charge. Therefore it is advisable to discharge it before handling. The kinescope bulb encloses a high vacuum and, due to its large surface area, is subjected to considerable air pressure. Therefore, kinescopes must be handled with more care than ordinary receiving valves. The large end of the kinescope bulb, particularly that part at the rim of the viewing surface, must not be struck, scratched or subjected to more than moderate pressure at any time. When installing, if the valve sticks or fails to slip smoothly into its socket or deflecting yoke, do not force it, but investigate and remove the cause of the trouble. All Radiotron replacement kinescopes are packed in special cartons and should be left in the cartons until required for installation. ### OPERATING INSTRUCTIONS. The following adjustments are necessary when turning the receiver on for the first time. - Turn the POWER/VOLUME control clockwise to switch the receiver "ON" and set the control near the middle of its range. An interval of about one minute is necessary for the valves to heat before satisfactory operation is obtained. - 2. Set the CHANNEL SELECTOR to the desired channel. - 3. Turn the FINE TUNING control fully anti-clockwise. - Adjust the VOLUME control, until the desired volume is obtained. - Turn the BRIGHTNESS control to the extreme anticlockwise position and then clockwise until a pattern appears on the screen. - Adjust the VERTICAL hold control until there is no vertical movement of the pattern. - 7. Adjust the HORIZONTAL hold control until a picture is obtained. - 8. Adjust the FINE TUNING, CONTRAST and BRIGHTNESS controls until the picture contrast and brightness is satisfactory. - After switching from one channel to another, it may be necessary to repeat adjustments 3 and 7. 10. When the set is switched on again after an idle period, it should not be necessary to repeat the adjustments unless the positions of the controls have been altered. If any adjustment is necessary, adjustment No. 8 is generally sufficient. However, if the controls have been altered it may be necessary to repeat adjustments 1 to 9. FIG. I-RECEIVER OPERATING CONTROLS ### INSTALLATION INSTRUCTIONS ### UNPACKING These receivers, complete with valves, are packed in cardboard cartons. Take the receiver from the carton and remove the wooden packing block from the base of the cabinet. Refer to the label inside the cabinet and make sure that the valves are in their correct sockets and pressed firmly dawn. Check to see that the kinescope high voltage lead clip is in Plug the power cable into a 200-240 volts, A.C. Power Point after making sure that the power cable is wired to the correct transformer tap. Refer to the instructions on the cabinet back. Connect the aerial to be used to the terminals at the rear of the cabinet. The in-built aerial may be used if conditions indicate that satisfactory reception will be obtained. ### AERIAL INPUT A 300 ohm aerial input is provided. However, by rewiring the matching unit input plug, as shown in the circuit diagram, a 72 ohm co-axial cable may be used. In locations where a very strong signal is likely to cause overloading of the receiver, an attenuator of the type shown in Fig. 10 should be used. ### INITIAL OPERATION CHECK Turn the Power/Volume control clockwise to switch the receiver "ON" and check all operations. This instrument has been occurately aligned by the manufacturer with precision instruments and should require no further adjustments. However, a check should be made of all the various functions and if further adjustments are found necessary the following should be carried out. ### ION TRAP MAGNET ADJUSTMENT Set the ion trap magnet approximately in the position shown in Fig. 2. Adjust the magnet by moving it backward or forward, at the same time rotating it slightly around the neck of the kinescope, for the brightnest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Re-adjust the ion trap magnet for maximum raster brilliance. The final touches of this adjustment should be made with the brightness control at the maximum clockwise position with which good line focus ### DEFLECTION YOKE ADJUSTMENT (Fig. 2) If the lines of the raster are not horizontal or squared with the kinescope, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment nuts. FOCUS ADJUSTMENT (Fig. 3) This adjustment has been made at the factory and it should only be necessary to re-adjust if the kinascope is replaced. In this case, adjust the focus control (R233) on the rear of the chassis until maximum definition of the line structure of the roster is obtained. FIG. 3 BEAR CHASSIS ADJUSTMENT ### PICTURE ADJUSTMENTS It will now be necessary to obtain a test pattern or picture in order to make further adjustments. When the Horizontal Oscillator and A.G.C. system are operating correctly, it should be possible to synchronise the picture at this point. However, if the A.G.C. control is not adjusted correctly and the receiver is overloading, it may be impossible to synchronise the picture. If the receiver is overloading, turn R308 (on the rear of the chassis, Fig. 3) anti-clockwise until the receiver operates normally and the picture can be synchronised. ###
CHECK OF HORIZONTAL OSCILLATOR ADJUSTMENT Turn the horizontal hold control to the extreme clockwise position. The picture will be out of synchronisation with a minimum of 12 bars slanting downwards towards the left. Turn the control slowly anti-clockwise. The number of diagonal black bars will gradually reduce and when only 11/2 to 3 bars remain, the picture will synchronise with further slight anti-clockwise rotation of the control. The picture should remain synchronised for approximately two full turns of additional anti-clockwise rotation of the control. Continue to turn the control anti-clockwise until the picture falls out of synchronisation. Turning the control beyond the fall-out position should produce between 2 and 5 bars before motor-boating occurs. Motorboating should occur before the extreme anti-clockwise position is reached. When the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is correctly aligned. Therefore, the "Horizontal Oscillator Adjustment" may be by-passed. ### HORIZONTAL OSCILLATOR ADJUSTMENT If during the above check the receiver failed to hold synchronisation over two full anti-clockwise turns of the control from the pull-in point, the following adjustments are necessary. Turning the horizontal hold control anti-clockwise will produce a number of bars before motorboating occurs. Adjust the horizontal sine wave coil (L401) until 3 or 4 bars are present before motorboating occurs, when the horizontal hold control is turned anti-clockwise from the fall-out point. If it is impossible to synchronise the picture and the A.G.C. system is correctly adjusted, it will be necessary to align the Horizontal Oscillator by the method laid down in the Alianment Procedure. ### CENTRING ADJUSTMENT The electrostatic focus kinescope is equipped with special centring magnets. These are in the form of two discs mounted on a non-magnetic tube which is placed around the neck of the kinescope at a distance of about ½" behind the deflection yoke plate. When the magnets are rotated on the tube so that the levers are opposite, maximum centring effect is produced. To shift the picture, rotate one of the magnets with respect to the other. To shift the picture in the desired direction, rotate the entire centring magnet assembly on the neck of the kinescope. By alternately rotating one magnet with respect to the other, then rotating the entire assembly around the neck of the valve, correct centring of the picture can be obtained. ## WIDTH, DRIVE AND HORIZONTAL LINEARITY Adjustment of the horizontal drive control affects the high voltage applied to the kinescope. In order to obtain the highest possible voltage and hence the brightest and best focussed picture, turn the horizontal drive trimmer (C408) anti-clockwise until a bright white line begins to appear in approximately the centre of the raster. Then, turn the control clockwise until the line disappears. Turn the horizontal linearity control (L403) clockwise until the picture begins to cramp on the right-hand side and then anti-clockwise until the cramping disappears and the best linearity is obtained. Adjust the width control (L402) to obtain correct picture width. This is with the picture extending approximately ¾" on either side of the kinescope mask and normal picture brightness. A slight re-adjustment of these three controls may now be necessary to obtain the best linearity. Adjustments of the horizontal drive control affect the horizontal hold and locking range. Therefore, re-check the oscillator alianment. ### HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS The height control (R331) has more effect on the bottom of the picture than the top, tending to give bottom stretch or cramp, depending on the setting of the control. The opposite effect is noticeable with variation of the vertical linearity control (R338) in that it tends to give top stretch or cramp depending on its position. Therefore, to adjust for height and linearity, the two controls should be adjusted in conjunction, so that approximately ½" of the picture extends beyond the top and bottom of the kinescope mask while maintaining the best linearity from top to bottom. The centring may have to be adjusted to obtain the above condition. ### A.G.C. THRESHOLD CONTROL The A.G.C. threshold control (R308) is adjusted at the factory and should not require any further re-adjustment. To check the adjustment, tune in a strong signal and synchronise the picture. Momentarily remove the signal by switching off the channel and back again. If the picture reappears immediately, the receiver is not overloading, due to incorrect setting of R308. If the picture does not re-appear immediately, or bends excessively, R308 should be re-adjusted. Turn R308 fully anti-clockwise. The raster may be bent slightly, but this should be disregarded. Now turn R308 clockwise until there is a very slight bend or change of bend in the picture. Then turn R308 anti-clockwise just enough to remove this bend or change of bend. If the signal is weak, the above method may not work, as it may be impossible to get the picture to bend. In this case, turn R308 clockwise until the snow in the picture becomes more pronounced, then anti-clockwise until the best signal to noise ratio is obtained. The A.G.C. control adjustment should be made on a strong signal if possible. If the control is set too far clockwise on a weak signal, the receiver may overload when a strong signal is received. ### INSTALLATION INSTRUCTIONS ### CHASSIS REMOVAL To remove the chassis from the cabinet, for repair or the installation of a new kinescope, proceed as follows: Remove the control knobs by pulling them straight off their spindles. Disconnect the loudspeaker, aerial, yoke, high voltage cables and kinescope cradle earthing strap. Disconnect the kinescope socket. The chassis is held in the cabinet by 5 bolts through the base of the cabinet. Removal of these enables the chassis to be withdrawn ### KINESCOPE HANDLING PRECAUTIONS Do not install, remove or handle the kinescope in any manner unless shatter-proof goggles are worn. People not so equipped should be kept away while handling kinescopes. Keep the kinescope away from the body while handling. ### REMOVAL AND INSTALLATION OF KINESCOPE First remove the loudspeakers and in-built aerial from the cabinet. Loosen 4 winged nuts holding the kinescope cradle to the support brackets. Gently slide the kinescope and cradle out and place face down on a covered table to avoid scratching. Slide the centring magnet and ion trap magnet from the neck of the kinescope. Remove the deflection yoke retaining plate and deflection yoke. Loosen two winged nuts on the rods holding the deflection vake hood to the kinescope bulb. Loosen two screws on either side of the straps around the kinescope bulb and ease the cradle and deflection yoke hood from the kinescope. Replace the kinescope by reversing the removal procedure. When viewed from the rear of the cabinet, the high voltage contact on the kinescope should be on the right hand side. When re-tightening the screws on the straps around the kinescope bulb, tighten them evenly and equally. ### SAFETY GLASS REMOVAL Remove the cabinet back and turn three cams (situated inside the cabinet front) anti-clockwise to release. Hold the glass securely and remove the metal retaining strip from the cabinet front. The glass will now be free to slide downwards and out. When replacing the glass carry out the above instructions in reverse. ### RECEIVER LOCATION The owner should be advised of the importance of placing the receiver in the proper location in the room. The location should be chosen to agree with the following- Away from windows so that bright light will not shine directly on the screen or in the viewer's eyes. However, some illumination in the room is desirable. To give easy access for operation and comfortable viewing. To permit convenient connection of the external aerial. Convenient to a power point. To allow adequate ventilation. ### TESTING INSTRUMENTS To properly service the television receiver, it is recommended that the following testing instruments be available— (1) A.W.A. Television Sweep Generator, type A56036. - (2) A.W.A. Cathode Ray Oscilloscope (C.R.O.), type A56031. - (3) A.W.A. Television Calibrator, type A56057. - (4) A W A Voltohmyst type A56010 - (5) A.W.A. Universal Measuring Bridge, type A56048. ### AUSTRALIAN TELEVISION CHANNELS | Channel
No. | Picture Carrier
Freq. Mc/s | Sound Carrier
Freq. Mc/s | Receiver R.F.
Osc. Freq. Mc/s | |----------------|-------------------------------|-----------------------------|----------------------------------| | 1 | 50.25 | 55.75 | 86.25 | | 2 | 64.25 | 69.75 | 100.25 | | 3 | 86.25 | 91.75 | 122.25 | | 4 | 133.25 | 138.75 | 169.25 | | 5 | 140.25 | 145.75 | 176.25 | | 6 | 175.25 | 180.75 | 211.25 | | 7 | 182.25 | 187.75 | 218.25 | | 8 | 189.25 | 194.75 | 225.25 | | 9 | 196.25 | 201.75 | 232.25 | | 10 | 210.25 | 215.75 | 246.25 | ### SOUND I.F. ALIGNMENT Connect the output of the Television Calibrator to pin 1 of V204 (4th Video I.F.). Set the Calibrator frequency at 5.5 Mc/s. Connect the Voltohmyst D.C. probe to pin 1 of V103 and set the range switch at ± 5 volts D.C. Adjust the following transformers for a peak output, reducing the input so that the Voltohmyst maintains a reading of +5 volts. T102 secondary (bottom core)*, T102 primary (top core)t, T101 (bottom core)* and T205 (bottom core).* Disconnect the Voltohymst probe from V103 and connect it to the junction of R107 and C110. Re-adjust T102 secondary core for zero voltage reading on the Voltohmyst. The voltage, before re-adjusting, should lie between +0.5 and -0.5 volts. ### VIDEO I.F. ALIGNMENT Connect a source of -5 volts D.C. bias to the junction of R201 and R205. Turn the A.G.C. control to the extreme clockwise position. Connect the Voltohmyst D.C. probe to pin 2 of V206 (Video Amplifier). Connect the output of
the calibrator to the tuner (TP2) through a 1000 pF capacitor using short leads. Set the tuner on Channel 6. Adjust the calibrator to the frequencies shown and adjust the following transformers for a peak output, reducing the input so that the Voltohmyst maintains a reading of approximately —3 volts. | 33.5 | Mc/s |
T204 | (bottom | core)* | |------|------|----------|---------|--------| | 35.3 | Mc/s |
T203 | (bottom | core)* | | 31.9 | Mc/s |
T202 | (bottom | core)* | Adjust the calibrator to the frequencies shown and adjust the following for a minimum output, increasing the input to maintain an output of approximately —1 volt. | 28.5 Mc/s |
L202 | (bottom core)* | |-----------|----------|------------------| | 30.5 Mc/s |
T201 | trap (top core)† | | 37.5 Mc/s |
L201 | (bottom core)* | Disconnect the calibrator and Volthomyst. Connect the C.R.O. to pin 2 of V206 (Video Amplifier) using the network shown in Fig. 4. Connect the sweep generator to pin 1 of V204 (4th Video I.F.) through a 1000 pF capacitor. Set the output from the sweep generator at its maximum. Connect the calibrator to pin 1 of V204 through a 10—25 pF capucitor. Adjust T205 primary (top core)† and secondary (bottom core)* so that the 36 Mc/s marker falls at 85% response and the curve is flat topped. The 30.5 Mc/s marker should then fall at 75%. The required response is shown in Fig. 5. Connect the sweep generator to the tuner (TP2) through a 1000 pF capacitor. The sweep output remains at its maximum. Connect the "Link Circuit" jig (Fig. 6) to the chassis next to T203. Connect the crystal lead to pin 5 of V201 (1st Video Amplifier) and the "earthy" lead to pin 1 of V203 (3rd Video I.F.). The output of the crystal probe is connected to the C.R.O. Set the tuner on Channel 8 and turn the fine tuning control to its mechanical centre. Connect the calibrator to the tuner (TP2) through a 10—25 pF capacitor. Reduce the capacitance of trimmer C201 to a minimum. Adjust T201 secondary (bottom core)* and T2 core (tuner)* for a round topped response with the 36 Mc/s marker at 80%. T2 affects the marker position whilst T201 affects the tilt of the response top. Increase the capacitance of C201 to give the 31.75 Mc/s marker at 70%. Repeat this series of adjustments, if necessary, to give the response curve shown in Fig. 7. Remove the "Link Circuit" jig from the chassis and reconnect the C.R.O. to pin 2 of V206 (Video Amplifier). View the overall response with 5 volts peak to peak output and re-adjust 7204, 7203 and 7202 if necessary, to give the 36 Mc/s marker at 45%, the 31.75 Mc/s marker at 60% and a flat topped response. Increase the C.R.O. gain 10 times and check that the accompanying sound (30.5 Mc/s) lies between 2% and 4%. The required overall response is shown in Fig. 8. ### NOTE When two positions of the core appear to give the correct adjustment, the following apply:— - * Coil tuned with core close to chassis. - † Coil tuned with core close to can top. ### TUNER ALIGNMENT A tuner unit which is completely out of alignment, due to most unusual circumstances, should be re-aligned by carrying out the procedure listed below in correct order. In cases where only slight re-adjustment is necessary, due to component or valve failure, the tuned circuits associated with them need only be re-adjusted. In such cases, follow the appropriate procedure. FIG 9A-TUNER ADJUSTMENTS FIG. 9 B OSCILLATOR ADJUSTMENTS ### ALIGNMENT OF AERIAL MATCHING UNIT The aerial matching unit is accurately aligned at the factory and no adjustment of the unit should be attempted in the customer's home, since slight mis-adjustment may cause serious attenuation of the signal, especially on channel 1. The R.F. unit is aligned with a particular matching unit in place and if for any reason a new matching unit is installed, the R.F. unit should be re-aligned. To align the aerial matching unit, disconnect C7 from the junction of C3 and L4. Remove the aerial matching unit from the tuner and clip it to the side of the chassis. Connect the output of the aerial matching unit, via a 1000 pF capacitor, to pin 1 of V202, keeping the leads as short as possible. Remove the 1st Video I.F. valve (V201). Connect a variable bias source to the junction of R201 and R205 and set the bias to approximately —5 volts. Connect the A.W.A. television calibrator to the aerial input socket (with 72 ohms connections) and adjust its output, until a convenient output is measured at the grid of V206. This convenient output may be negative D.C. volts if measured with the A.W.A. Voltohmyst, or 400 cycle modulation observed on the C.R.O. if a modulated signal is used. Tune the calibrator to 36.0 Mc/s and adjust the inductance of L1 and L4, by varying the distance between turns, for a minimum output indication. Remove the 1000 pF capacitor, bias and replace V201. Connect a 300 ohm $\frac{1}{2}$ watt composition resistor from the junction of C3 and L4 to earth with short leads. Connect the C.R.O. low capacitance crystal probe across the 300 ohm resistor and turn the C.R.O. gain to maximum. Connect the sweep generator to the matching unit aerial terminals with the 300 ohm line plug connections. To prevent coupling reactance from the sweep generator into the matching unit, it is advisable to connect a resistance pad (Fig. 10), constructed with short leads, to the input terminals. Connect the calibrator loosely to the matching unit terminals. It will be found convenient to use the pad in Fig. 12 for this purpose. Set the sweep generator to sweep from 42—52 Mc/s. This may be achieved with the A.W.A. Sweep Generator Type A56036 by switching the generator to channel 1 and screwing the core in several turns. Adjust L2 and L3 to obtain the response shown in Fig. 11. (Note that adjustment to L3 affects the shoulder of the response curve, whilst L2 affects the position of the 46.5 Mc/s point.) Remove the 300 ohm resistor, crystal probe connections, seal L1, L2, L3 and L4 in position and replace covers. Re-connect C7 to the junction of C3 and L4. ### R.F. ALIGNMENT For complete tuner alignment the tuner must be removed from the receiver. Disconnect the co-axial lead from the I.F. transformer at the junction of C201 and T201. Extension leads for B+, Filament and Earth connections to the tuner will be required. For final adjustment of oscillator frequencies, the procedure for adjustment of the oscillator with covers in position may be carried out with the tuner mounted in its normal position. ### COMPLETE R.F. ALIGNMENT Remove cover from tuner. Connect the sweep generator to the aerial input terminals of the matching unit. Use a 4 pin plug for this purpose and keep the leads to the termination of the sweep output cable very short. (It is advisable to have on hand a special cable for connection from tuner to sweep generator with a resistive pad (Fig. 12) having balanced connections, direct to the plug.) Connect a bias source to the A.G.C. terminal of the tuner and set the bias to -3 volts while making all adjustments for correct responses. Connect the vertical input of the C.R.O. direct to TP1 on the tuner with a shielded lead. Earth the shield at the tuner. Terminate the inner connector of the I.F. co-axial cable with a 47 ohm composition resistor. Switch on the receiver or power supply to the tuner and carry out the following adjustments with the correct voltages —275V H.T., 6.3V Filament and —3V Bias. Switch to channel 6 and turn the fine tuning control to the middle of its range. Loop an insulated wire from the R.F. input terminal of the calibrator, near the 6U8 circuit. Adjust C27 to correct oscillator frequency of 211.25 Mc/s. Turn the fine tuning to the extreme clockwise position. Turn the core of C29 right out. Note the oscillator frequency. Turn C29 core in, such that the frequency changes by 0.25 Mc/s. Return the fine tuning to the middle of its range. Switch to channel 10 and adjust L37 to give oscillator frequency of 246.25 Mc/s. Switch to channel 9 and adjust L38 to give oscillator frequency of 232.25 Mc/s. Switch to channel 6 and re-adjust C27, if necessary, to 211.25 Mc/s. Repeat the above procedure until no adjustment is necessary for correct oscillator frequencies on channels 10, 9 and 6 within \pm 0.3 Mc/s. Channel 8 and 7 have no separate frequency adjustment, but the frequency will be found to be 225.25 Mc/s and 218.25 Mc/s \pm .3 Mc/s respectively, if adjustments of 10, 9 and 6 frequency are carried out correctly. Make sure that the presence of the insulated wire loop from the calibrator does not change the frequencies. Connect the calibrator to the input pad from the sweep generator as shown in Fig. 12. Switch the tuner and sweep generator to channel 6 and adjust the output to give a response pattern on the C.R.O. Detune the core of T2 (Converter I.F. transformer) when adjusting response curves until no variation of curve is observed on the C.R.O. Adjust C11, C14, C16 and C20 for correct response shape, with markers, from calibrator at Video and sound carrier frequencies, correctly placed on the response curve. Be sure that the pattern shown on the C.R.O. is not disturbed by a 50 c/s pick-up. A direct earth strap between tuner, C.R.O. and power supply will eliminate this interference. The correct adjustment of C11 is indicated by maximum amplitude at a frequency midway between video and sound markers. C16 is adjusted for the required band-width on top of the response curve. C20 affects the frequency of the response mainly and C14 the symmetry. C11 also affects symmetry and tilt but should always be adjusted for the maximum output in the centre. Switch the tuner and sweep generator to channel 10 and adjust the calibrator to give video and sound markers. Adjust L5 for maximum output between video and sound markers and L26, L16 for correct curve. L16 affects mainly the frequency of the response and L26 the symmetry. Return to channel 6 and observe the response curve. If re-adjustment is
necessary, repeat the procedure contained in the previous three paragraphs, until correct response is obtained on channels 6 and 10 without re-course to adjustment. Observe the responses on channels 9, 8 and 7 which should be within the tolerances shown in Fig. 13. FIG. 13-RESPONSE CURVE TOLERANCES ALL CHANNELS Re-check the oscillator frequency adjustment as in the first paragraph of this section. If re-adjustment is necessary, check the response curves of channels 10 and 6. Re-adjust if necessary. Then proceed as follows: Switch to channel 5 and adjust screw in L42 to give oscillator frequency of 176.25 Mc/s. Switch to channel 3 and adjust screw in L44 to give oscillator frequency of 122.25 Mc/s. Switch to channel 2 and adjust screw in L45 to give oscillator frequency of 100.25 Mc/s. Switch to channel 1 and adjust screw in L46 to give oscillator frequency of 86.25 Mc/s. Switch tuner and sweep generator to channel 5 and spread or close turns of L21 and L31 to give correct curve as shown in Fig. 14. Adjust L10, in the R.F. amplifier grid circuit for maximum response in the centre of the channel. L21 affects the frequency of the response mainly and L31 the symmetry. FIG. 14 TUNER RESPONSE CURVES Switch to channel 4 and if necessary adjust L22 and L11 for correct response. Switch to channel 3 and spread or close the turns of L23 and L33 to give approximately the correct response. Spread or close the turns of L12, in grid circuit, for maximum response at the centre frequency which corresponds to the minimum hollow in the top of the curve. Switch to channels 2 and 1 in turn and adjust- L24, L34, L13 on channel 2 L25, L35, L12 on channel 1 for correct response curve. Re-check response curves of channels 10 and 6, and re-adjust C14, C20, L16, L26 if necessary. Then re-check response curves of channels 5, 4, 3, 2 and 1. ### FINAL OSCILLATOR ADJUSTMENT Replace the cover on the tuner unit and with the calibrator R.F. input lead loosely coupled near the oscillator circuitry, re-adjust C27 on channel 6, L37 on channel 10, L38 on channel 9 for the correct frequency when the fine tuning control is in its centre position. Then re-adjust screws through the front of the tuner for correct frequencies on channels 5, 3, 2 and 1. Check that the correct frequency on all channels is obtained without adjustments when the fine tuning control is rotated \pm 45° from its centre position. Check that the oscillator injection voltage, measured with the Voltohmyst D.C. probe at TP2, is between 2.0 and 5.0 volts. Make sure that the screws retaining the covers are firmly in position and that the covers are well fitted to maintain a law oscillator radiation. ### SPECIAL NOTES - 1. Always align with the correct bias of --3 volts which is an average figure of the A.G.C. potential. - The cover on the aerial matching unit must be in position whilst adjusting the tuner R.F. responses. - 3. The cover of the tuner must be in position when making final adjustment to frequency of local oscillator. - Detune the core of T2 (converter I.F. transformer) when adjusting response curves until no variation of the curve is observed on the C.R.O. ### HORIZONTAL OSCILLATOR ALIGNMENT Normally the adjustment of the horizontal oscillator is not considered to be a part of the alignment procedure, but since the oscillator waveform adjustment may require the use of an oscilloscope, it usually can not be done conveniently in the field. The waveform adjustment is made at the factory and normally should not require re-adjustment in the field. However, the waveform adjustment should be checked whenever the receiver is aligned or whenever the horizontal oscillator operation is incorrect. When no C.R.O. is available the horizontal oscillator may be aligned and checked as follows: Tune in a station, if available, or, using a generator to provide the appropriate synchronising signals, synchronise the picture by adjusting the horizontal and vertical hold controls respectively. If the picture cannot be synchronised, short circuit the sine wave stabilising coil (L401) and then adjust the horizontal hold control until synchronisation is obtained. Remove the short circuit and adjust the core in L401 until the picture is again synchronised. If synchronisation is still unobtainable, adjust the horizontal hold control slowly, in conjunction with the core in L401, until the picture is synchronised. Check for over-drive and make any necessary re-adjustments to the horizontal hold control or to the core in the sine wave stabilising coil. To check if the correct adjustment has been made, turn the horizontal hold control to the extreme clockwise position. The picture should be out of synchronisation, with a minimum of twelve bars slanting downwards to the left. Turn the control slowly anti-clockwise. The number of diagonal black bars will be gradually reduced and when only 11/2 to 3 bars sloping downward to the left are obtained, the picture will synchronise upon slight additional anti-clockwise rotation of the control. The picture should remain in synchronisation for approximately two full turns of additional anti-clockwise rotation of the control. Continue turning the control anticlockwise until the picture falls out of synchronisation. Rotation beyond the "fall-out" position should produce between 2 and 5 bars before motorboating occurs. Motorboating should be reached before the control reaches the extreme anticlockwise position. If an oscilloscope is available, the procedure is as follows: Connect the low capacity probe of the C.R.O. to the terminal of L401 which is connected to C406 and R403. Dress the probe at least one inch away from the sine wave coil (L401). Turn the horizontal hold control so that the picture is in synchronisation. The pattern on the C.R.O. should be as shown in Fig. 15A. If not, adjust the sine wave coil until nominal waveform, as shown, is obtained. Remove the C.R.O. on completion of this adjustment. When the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. ### SENSITIVITY CHECK A comparative sensitivity check can be made by operating the receiver on a weak signal from a television station and comparing the picture and sound obtained to that obtained on other receivers under the same conditions. This weak signal can be obtained by connecting the service department aerial to the receiver through a ladder type attenuator pad. The number of stages in the pad depends upon the signal strength available at the aerial. A sufficient number of stages should be inserted so that a somewhat less than normal contrast picture is obtained when the contrast control is in the extreme clockwise position. Only carbon type resistors should be used to construct the pad. ### A.G.C. CONTROL ADJUSTMENT Disconnect all test instruments except the oscilloscope which should be connected to pin 7 of V206. Connect an aerial to the receiver aerial terminals. Turn the A.G.C. control to the extreme anti-clockwise position. Tune in a strong signal and adjust the oscilloscope to see the video waveform. Turn the A.G.C. control clockwise until the tips of sync. begin to be compressed and then anti-clockwise until no compression is obtained. ### RESPONSE CURVES The response curves referred to throughout the alignment procedure were taken from a production set, but some variations can be expected. ### CRITICAL LEAD-DRESS - All leads in the video I.F., sound I.F. and video circuits to be as short as possible. - 2. Any non-insulated carbon resistors to be dressed so as to avoid possible contact with the chassis or other components. - 3. Bypass capacitor (C105) under sound I.F. shield to be laid in such a way as to avoid a short to shield. - 4. The following components in the video amplifier stage to be kept clear of the chassis and other metal parts in order to avoid excessive stray capacitances: C230, L206, L207, L208, R224. R229. - High voltage capacitors C302 and C415 to be dressed so as to avoid possible breakdown to chassis or other components. - High voltage leads to the plate of V402 and the side connection of the kinescope to be dressed as far from adjacent metal parts as possible. - All high voltage (15KV) wiring and connections to be kept free of sharp spikes and discontinuities likely to cause corona. - Any high wattage resistors (wire wound) to be dressed clear of other components which may be damaged because of fairly high body temperature. - Dress power leads away from the volume control and 6AV6 input circuit. - 10. When the chassis is mounted in the cabinet, keep the lead to the cathode of the kinescope dressed clear of the metal parts of the chassis and the high voltage yoke leads. ### FAULT FINDING The following is a list of symptoms and some suggestions for their possible cause: ### NO RASTER ON KINESCOPE - 1. Incorrect adjustment of ion trap magnet. Magnet reversed either front to back or top to bottom. - 2. V401 or V402 not operating. Check waveforms on grids. - 3. No high voltage. If horizontal deflection is operating as shown by the correct voltage at terminal (1) of the high voltage transformer, the trouble can be isolated to the 1B3GT circuit. Either the T402 high voltage winding is open circuit, the 1B3GT valve is defective or its filament circuit is open. - V206 circuit defective. Refer to the circuit diagram and waveforms. - 5. Damper valve (V404) defective. - 6. Kinescope defective. - 7. Brightness control open circuit. - 8. No receiver anode voltage (B+). Filter capacitor short-circuited, or filter choke open circuit. ### NO VERTICAL DEFLECTION - 1. V303B or V304 defective. Check voltage and waveforms on grids and plates. - 2. T302 open circuit. - 3. Vertical deflection coils open circuit. ### SMALL RASTER - 1. Low B+ or mains voltage. - 2. V402 or V405 defective. ### POOR VERTICAL LINEARITY - 1. If adjustments cannot correct, change V304. - 2. Vertical output transformer (T302) defective. - 3. V303B
defective. Check voltage and waveforms on grid and plate. - 4. C318, C319, C320, C321 or C322 defective. - 5. Low anode voltage. Check rectifiers and capacitors in supply circuits. - 6. If height is insufficient, try changing V303. ### POOR HORIZONTAL LINEARITY - 1. If adjustments do not correct, change V402 or V404. - 2. T402 or L403 defective. - 3. C412 or C413 defective. ### CRAMPING ON SIDE OF RASTER - 1. C416 defective. - 2. Yoke defective. ### PICTURE OUT OF SYNCHRONISATION HORIZONTALLY - 1. T401 incorrectly tuned. - 2. L401 incorrectly tuned. ### TRAPEZOIDAL OR NON-SYMMETRICAL RASTER - 1. Incorrect adjustment of centring or ion trap magnets. - 2. Defective yoke. ### RASTER AND SIGNAL ON KINESCOPE BUT NO SOUND - 1 T206 defective - Sound I.F. ratio detector or audio amplifier inoperative. Check V101, V102, V103 and their socket voltages. - 3. Audio system defective. - 4. Loudspeaker defective. ### SIGNAL AT KINESCOPE BUT NO SYNCHRONISATION - 1. A.G.C. control (R308) incorrectly adjusted. - 2. V301 inoperative. Check voltage and waveforms at its anode and grid. ## SIGNAL ON KINESCOPE CATHODE BUT NO VERTICAL SYNCHRONISATION - 1. Check V303B and its associated circuit. - 2. Integrating network inoperative-check. - 3. V303A, V303A or associated circuit defective. - Gas current, grid emission or grid cathode leakage in V302, V303. Replace. ## SIGNAL ON KINESCOPE CATHODE BUT NO HORIZONTAL SYNCHRONISATION - 1. T401 or L401 incorrectly adjusted. - 2. V302B or V303A inoperative. Check socket voltage and waveforms. - 3. T401 or L401 defective. - 4. C401, C402, C403, C404, C405, C406 or C314 defective. - 5. If horizontal speed is completely off and cannot be adjusted, check R407, R408 and R412. ### PICTURE STABLE BUT POOR RESOLUTION - 1. V205 or V206 defective. - 2. Peaking coils defective. Check resistance. - 3. R.F. and I.F. circuits incorrectly aligned. ### PICTURE SMEAR - 1. R.F. or I.F. circuits incorrectly aligned. - 2. Open circuit peaking coil. - 3. This trouble can originate at the transmitter. Check on another station. ### PICTURE JITTER - 1. A.G.C. control (R308) incorrectly adjusted. - 2. If regular sections at the left of the picture are displaced, change V402. - 3. Vertical instability may be due to loose connections or noise. - Horizontal instability may be due to unstable transmitted signal, ## RASTER BUT NO SOUND, PICTURE OR SYNCHRONISATION - 1. Defective aerial or transmission line. - 2. R.F. oscillator off frequency. - 3. R.F. unit inoperative. Check V1 and V2. - 4. One of video I.F. stages or video detector defective. ### D.C. RESISTANCE OF WINDINGS | | WINDING | D.C. RESISTANCE IN OHMS | | WINDING | D.C. RESISTANCE IN OHMS | |-------|--|-------------------------|------|----------------------------|-------------------------| | Tuner | Windings | * | T202 | 1st Video I.F. Transform | er | | L201 | 37.5 Mc/s Trap | * | | Primary | * | | | 0000000000 000000000000000000000000000 | * | | Secondary | * | | L202 | 28.5 Mc/s Trap | | T203 | 2nd Video I.F. Transform | er | | L203 | I.F. Filter Choke | * | | Primary | * | | L204 | Video Detector Filter Choke | 3 | | Secondary | * | | L205 | Video Detector Peaking Co | 7.5 | T204 | 3rd Video I.F. Transform | er | | L206 | 5.5 Mc/s Trap | 1.5 | | Primary | * | | | | | | Secondary | * | | L207 | Video Amplifier Shunt
Peaking Coil | 12 | T205 | 4th Video I.F. Transform | er | | L208 | Video Amplifier Series | | | Primary | * | | | Peaking Coil | 6 | | Secondary | * | | L401 | Horizontal Sine Wave Coil | 45 | T206 | Sound Take Off Transfor | mer | | L402 | Width Coil | 10 | | 2—3 | 1.6 | | L403 | Horizontal Linearity Coil | 19 | | 1—3 | 4.7 | | L 404 | H.T. Choke | * | T301 | Vertical Oscillator Transf | ormer | | | | | | Primary (Grid) | 450 | | L405 | Deflection Yoke | 22 | | Secondary (Cathode) | 130 | | L406 | Deflection Yoke | 22 | T302 | Vertical Output Transform | ner | | L407 | Deflection Yoke | 11 | | Primary | 550 | | L408 | Deflection Yoke | 11 | | Secondary | 14 | | L409 | Filter Choke | 40 | T401 | Horizontal Blocking Oscill | ator | | T101 | Sound I.F. Transformer | 1 | | YE—Anode | 23 | | 7102 | Ratio Detector Transformer | | | YE—C405 | 60 | | | Primary | 8 | T402 | Horizontal Output Transf | ormer | | | Secondary | * | i | 1—2 | 2 | | T103 | Audio Output Transformer | | | 2—3 | 11 | | 1103 | 2112 | 280 | | 3—4 | 2.8 | | | Primary | * | | 4—5 | 7.5 | | | Secondary | = | | 5—Anode | 320 | | T201 | I.F. Link Transformer | | T403 | Power Transformer | | | | Primary | * | | Primary | 7 | | | Secondary | * | | Secondary | 45 | ^{*} Less than I ohm. The above readings were taken on a standard chassis, but substitution of materials during manufacture may cause variations and it should not be assumed that a component is faulty if a slightly different reading is obtained. ### MECHANICAL REPLACEMENT PARTS | Description. | Part No. | Code No. | Description. | Part No. | Code No. | |---|----------|------------------|--|----------|----------| | MAIN CHASSIS:— | | | FINE TUNING ASSEMBLY: | | | | Anode Cap. H.V. Rectifier | | 188011 | Detent Mech. Assembly | 40144 | | | Anode Cap. and Lead. Horizontal Output | 40044 | | Guide, Fine Tuning Spring | 40140 | | | Bracket, Chassis. Rear Mounting | 40201 | | Park 17 March 18 March 20 | | | | Bracket, Chassis. Side Mounting | 40214 | ĺ | Lever Assembly | 40165 | | | Bracket, Tuner Mounting | 40202 | | Retainer, Spring. Fine Tuning | 40141 | | | Bracket, Width and Linearity Coils | 40213 | | Spring, Fine Tuning | 40502 | | | Cable, Volume Control | 49711 | | Spring, Lever | 40500 | | | Clip, Bakelite Mounting | | 211019 | NO TO SER | | | | Clip, Chassis Mounting | | 211022 | Spring, Wiper | 40507 | | | Connector, Kinescope Ultor | 40018 | | MISCELLANEOUS:- | | | | Coupling, Contrast Control | 40206 | | Bracket, Control Box Mounting | 40292 | | | Cover, Power Transformer | 40025 | | CHANGE COMMERCIA | | | | Dial Lamp Holder | 4195 | | Cabinet (201-T) | 28133 | | | Dial Lamp Holder Spring | 25773 | | Cabinet (202-C) | 28134 | | | Fuse Holder | 40209 | | Cabinet (203-T) | 28127 | | | Insulator, Contrast Control Mounting | 40203 | | Cabinet Trim, Horizontal | 40441 | | | Insulator, H.V. Rectifier Socket Mounting | 40030 | | Cabinet Trim, Vertical (Console) | 40448 | | | Magnet, Centring | 40405 | | Cabinet Trim, Vertical (Table) | 40440 | | | Nagnet, Ion Trap | 40247 | | Control (Control (Con | | | | Plate, ON/OFF—Vol. Brightness | 40200 | | Control Box Assembly | 40289 | | | Plate, Preset Control Mounting | 40196 | | Cover, Kinescope Base | 40402 | | | Plug, Power. Chassis Mounting | | 581585 | Cradle, Strap Assembly L.H. | 40253 | | | Plug, Speaker | | 481215 | Cradle, Strap Assembly R.H. | 40254 | | | Retainer, Yoke | 40243 | | 100 St. M. VI. 1100 | | | | Screen, I.F. Output | 40215 | | Dust Seal, Kinescope | 40258 | 2 | | Screen, Sound I.F. | 40012 | | Glass Retainer. Inside Cabinet | 40442 | | | Shield, H.V. Rectifier | 40034 | | Glass Retainer. Outside Cabinet | 40422 | | | Shield, Horizontal Output Transformer | 40036 | | Hinge Bracket, Cabinet Back | 40241 | | | Shield Cover, Horizontal Output Transforme | r 40037 | 12/2/20/20/21 | Hinge | 40278 | | | Socket, Kinescope | | 794598 | Hood Assembly | | | | Socket, 8 Pin Wafer | | 793036 | 1. Co. Andrews (1. 1994) (1. 1994) (1. 1994) | 40424 | | | Socket 7 Pin Less Register
Socket, 7 Pin Less Register Mica Filled | | 794576
794578 | Hood Cushion | 40231 | | | Socket, 7 Pin With Register | | 794574 | Hood Support | 40255 | | | Socket, 8 Pin Mica Filled | | 794582 | Hood Support Stud | 40238 | Ų | | Socket, 9 Pin Mica Filled | | 794591 | Knob Assembly, Brightness | 40229 | 0 | | Spindle, Contrast Control Extension | 40205 | | Knob Assembly, Channel Selector | 40227 | 8 | | Spring, Earthing Deflection Yoke | 40564 | | Knob Assembly, Fine Tuning |
40226 | | | Spring, Contact. Chassis to Base Shield | 40509 | | 100 0 0 000 0000 0000 10 | | | | Terminal Panel, Aeriai | 40411 | | Knob Assembly, ON/OFF Volume | 40228 | | | TUNER UNIT: | | | Knob, Horizontal Hold | 40197 | | | Tuner | 40129 | | Plate, Speaker Mounting | 40264 | Y | | Bracket, Support | 40159 | | Power Cord Assembly | | 581 | | Cable, Tuner to I.F. | 49714 | | Retainer, Horizontal Hold Knob | 40198 | Ĝ | | Cover, Main Body | 40152 | | Safety Glass | 40406 | | | Cover, Front | 40153 | | DESCRIPTION TO THE TAX TO THE | | | | Pin Jack Assembly | 27685 | | Strap, Earthing. Kinescope Mount to Cl | | | | Terminal Panel Assembly | 40612 | | Washer, Horizontal Hold Knob | 40199 | 6 | ### SOCKET VOLTAGES | Valve
No. | Type
and Function | | Anode to
Chassis | | en Grid
Chassis | | thode to
Chassis | | ontrol Grid
o Chassis | Remarks | |--------------|---|----------------------|---------------------|------------|--------------------|------------|---------------------|------------|--------------------------|--| | | 2820000 20000 44000 44000 | Pin
No. | Volts | Pin
No. | Volts | Pin
No. | | Pin
No. | Volts | | | V2 | 6U8 Converter
R.F. Oscillator | 6 | 120
230 | 3 | 120 | 7
8 | 0 ·
120 | 2 9 | -2.5 to -5
+115 | | | V١ | 6BQ7A R.F. Amplifier
R.F. Amplifier | 6 | 250
130 | _ | _ | 8 | 130
1.2 | 7 2 | 128
0 | | | V101 | 6AU6 1st Sound I.F. | 5 | 124 | 6 | 124 | 7 | 0.72 |] | —0.1
to
—1 | | | V102 | 6AU6 2nd Sound I.F. | 5 | 110 | 6 | 110 | 7 | 0 | 1 | 0.5
to
5 | | | V103 | 6AL5 Ratio Detector | 2 7 | —8
+2.5 | = | _ | 5
1 | +2.3
+8 | _ | = | | | V104 | 6AV6 A.F. Amplifier
A.G.C. Clamp | 7
5, 6 | 82
0 | = | _ | 2 2 | 0 | | —0.76
— | | | V105 | 6AQ5 A.F. Output | 5 | 230 | 6 | 240 | 2 | 11.4 | 7 | - | | | V201
V202 | 6AU6 1st Video I.F.
Amplifier
6CB6 2nd Video I.F. | 5 | 145 | 6 | 145 | 7 | 1.1 | 1 | _ | | | | Amplifier | 5 | 135 | 6 | 135 | 2 | 0.95 | 1 | - | | | V203 | 6CB6 3rd Video I.F.
Amplifier | 5 | 180 | 6 | 120 | 2 | 1.45 | 1 | = | | | V204 | 6CB6 4th Video I.F.
Amplifier | 5 | 180 | 6 | 120 | 2 | 1.45 | 1 | _ | | | V205 | 6AL5 Video Detector | 7 | 0.5 —1.5 | - | - | 1 | 0 | | | | | V206 | 12BY7 Video Amplifier | 7 | 120 | 8 | 115 | 1 | 0.7 | 2 | 0 to —1 | | | V207 | 17HP4B Kinescope | Side
Con-
tact | 14KV† | 10 | 375 | 11 | 0-135 | 2 | + 75 | Normal Brightness | | V301 | 6CB6 A.G.C. Amplifier | 5 | 0 to —2 | 6 | 255 | 27 | 115 | 1 | 25 to 50 | A.G.C. maximum clockwise position | | V302A | ½6SN7-GTA Vertical
Sync. Separator | 2 | 20 to 50 | _ | _ | 3 | 0 | 1 | —1 to —6 | , | | | \$6SN7-GTA Horizontal Sync. Separator | 5 | 255 | - | _ | 6 | 115 | 4 | 100 | | | V303A | ⅓6SN7-GTA Sync.
Amplifier | 5 | 45 | - | _ | 6 | 0 | 4 | 5 to
+1 | - | | V303B | ½6SN7-GTA Vertical
Oscillator | 2 | 180 | | | 3 | 0 | , | —40 | | | V304 | 6AQ5 Vertical Output | 5 | 240 | 6 | 245 | 2 | 25 | 1 | 0 | With height and linearity controls correctly | | V401 | 6SN7-GTA Horizontal
Control | 2 | 270 | - | - | 3 | -4 to
+10 | 1 | —15 | adjusted | | | Horizontal Oscillator | 5 | 145 | - | | 6 | 0 | 4 | 70 | | | V402 | 6BQ6-GTB/6CU6
Horizontal Output | Top
Cap. | 4.1KV
Peak* | 4 | 160 | 8 | 18 | 5 | —10
— | | | V403 | 1B3-GT High Voltage
Rectifier | Top
Cap. | 14KV
Peak* | - | - | 7, 2 | 14KV† | - | Alexander of the second | | | V404 | 6AX4-GT Damper | 5
5 | 270 | _ | = | 3 | 3.1KV | _ | | | | V405 | 5AS4 Rectifier | 4, 6 | 270 AC | - | - | 2, 8 | peak*
5.0 AC | _ | | | No Signal input. All D.C. voltages measured with Voltohmyst. All voltages in Tuner (V1, V2) measured with Voltohmyst with 0.1 megohm resistor in series with the D.C. probe. † Measured with Voltohmyst fitted with high voltage probe. † Do not measure. FIG. 17. TOP CHASSIS ALIGNMENT ADJUSTMENTS FIG. 18. UNDER CHASSIS ALIGNMENT ADJUSTMENTS FIG.20 TOP LAYOUT FIG. 21 BOTTOM LAYOUT | Composite Acrial Section Inductor 40344 19 64 1201 23.5 MeV.k. Trop 40073 21 1414 1202 25.5 MeV.k. Trop 40073 21 1414 1202 25.5 MeV.k. Trop 40073 21 1016 10 | CODE No. | DESCRIPTION | PART No. | FIG. No. | LOCATION | CODE No. | DESCRIPTION | PART No. | FIG. No. | LOCATION | |--|----------|---|----------|----------|----------|-------------|---|---------------------------------------|----------|----------| | Colis | | | | | | | INDUCTORS (continued) | | d | | | Filter | 2 | Composito | 40344 | 10 | 17 | 1001 | 37 5 Mc/s Tran | 70073 | 10 | 114 | | Aerial Section Inductor 40356 19 120 1 | | Filtor | 40345 | 0 | 1 7 | 1202 | 27.3 Mc/s Tran | 2004 | 216 | H14 | | Aerial Section Inductor Acrial Segment | ب
22 | Call | 40346 | | | 1203 | LE Element Chebo | 1004 | 16 | N | | Aerial Section Inductor 40300 19 200 5.5 Mor/s. Treaking Cail 40117 211
211 21 | 7 7 | | 40347 | 0. | . E | 1204 | Detector Filter Choke | 40303 | 21 | 010 | | Aerial Section Segment 40169 19 C6 1205 5.5 Mr.S. Trop 40120 21 Channel 5 Aerial Section Inductor 40304 19 C6 1205 Video Amplifer Shurt Peaking Cail 40119 21 Channel 2 Aerial Section Inductor 40304 19 E7 L402 Horizontal With Cail 40049 21 Channel 3 Aerial Section Inductor 40314 19 E7 L402 Horizontal With Cail 40049 21 Channel 3 Aerial Section Inductor 40314 19 F7 L403 Horizontal With Cail 40049 21 Channel 3 Aerial Section Inductor 40315 19 F7 L405 Horizontal With Cail 40049 21 Channel 3 Aerial Section Inductor 40316 19 F7 L405 Horizontal With Cail 40049 21 L405 Channel 3 Aerial Section Inductor 40316 19 F7 L405 Horizontal With Cail 40049 21 L405 Horizontal With Cail 40049 21 L405 Horizontal With Cail 40040 Cail 40040 21 L405 Horizontal Cail 10040 20 Horizontal Cail 40040 21 L405 Horizontal C | [5] | Aerial Section Inductor | 40300 | 19 | E7 | 1205 | Diode Load Peaking Coil | 40117 | 21 | 910 | | Aerial Section Segment 40169 19 | . 91 | | | 19 | D8 | L206 | 5.5 Mc/s. Trap | 40120 | 21 | ALN
4 | | Channel 5 Aeriol Section Inductor 40030 19 68 1200 Wideo Antiplier Series Peaching Cail 40019 21 Channel 5 Aeriol Section Inductor 40030 19 67 1402 Horizontal Sine Wave Cail 40030 19 67 1403 Horizontal Section Inductor 400315 19 67 1403 Horizontal Linearity Cail 40030 19 67 1403 19 67 1403 19 67 1404 Channel 2 Aeriol Section Inductor 400315 19 67 1405 1400 1400 1400 1400 1400 1400 1400 | 17 | April Cortion Commont | 40169 | 19 | 8 | L207 | Shunt Peaking | | 21 | 014 | | Channel 5 Aerial Section Inductor 40304 19 10 1402 1402 1402 14004 1 | 87 | | | 19 | 8 | 1708 | Video Amplifier Series Peaking Co | | 212 | N.F. | | Channel 5 Aerial Section Inductor 40304 19 1402 1404 140044 140 | (61 | | | 5. | 22 | 1401 | Horizontal Sine Wave Coil | 40050 | 71 | - 2 | | Channel 3 Aerial Section Inductor 40315 19 | 017 | Channel 5 Aerial Section Inductor | 40304 | 2 5 | 100 | 1402 | Horizontal Width Coll | 40049 | 1 2 | ÷ 5 | | Channel Section Inductor | =: | Channel 4 Aerial Section Inductor | 40305 | <u> </u> | 20 | 1403 | Horizontal Linearity Coil | 40048 | | 200 | | Channel 2 Aerion Secrion Inductor 40315 19 1405 | 717 | Channel 3, Aerial Section Inductor | 40314 | 20 | 2 | 101 | Choke | 902014 | | N. | | Sa Retroin flaductor | 51. | Channel 2 Aerial Section Inductor | 40315 | · C | 36 | 208 | | 214210 | | | | State Section Segment 4010 19 19 19 1408 19 1408 19 1408 19 1408 19 1408 19 1408 19 1408 1408 1408 19 1408 19 1408 19 1408 19 1408 19 1408 19 1408 19 1408 19 1408 19 1408 19 1408 19 1408 19 1408 19 1408 19 10 10 10 10 10 10 10 | 4-1-1 | Channel Aerial Section Inductor | 40316 | . 0 |) ä | 1405 | | | | | | Channel 5 6802A Plate Sect. Inductor | 211 | A PO 7 Plate Coupling obu/ A | 40100 | 0 | 2 62 | 7404 | Deflection Yoke | 40010 | | | | Sa Rear Channel 5 6802A Plate Sect. Inductor 40169 19 C9 C9 C400 C10 | 117 | ODEN A LIGHE SECTION INDOCTOR | 40312 | 19 | 60 | 1408 | | | | | | Channel 5 68Q7A Plate Section Segment | 118 | S3 Rear | | 19 | 60 | 1409 | Filter Choke | 40113 | 20 | 615 | | Channel 5 6807A Plate Sect. Inductor 40302 19 C9 RESISTORS Channel 4 6802A Plate Sect. Inductor 40303 19 B9 R1 820 ohms ± 10% ± warth 19 Channel 2 6807A Plate Sect. Inductor 40318 19 C9 R2 C8 k ohms ± 10% ± warth 19 Channel 2 6802A Plate Sect. Inductor 40318 19 C9 R2 C8 k ohms ± 10% ± warth 19 Channel 2 6802A Plate Sect. Inductor 40318 19 E11 R6 100K ohms ± 10% ± warth 19 Converter Grid Sect. Inductor 40318 19 C11 R7 If wolm ± 10% ± warth 19 C0 C0 C0 C11 C11 C0 C11 | 617 | 6BQ7A Plate Section Segment | 40169 | 91 | రిక | | | | | | | Channel 5 6802A Plate Sect. Inductor 40302 19 CF CRAIN Channel 4 6802A Plate Sect. Inductor 40303 19 CF CRAIN Channel 2 6802A Plate Sect. Inductor 40317 19 RT RSD ohms ± 10% ½ wath 19 Channel 1 6802A Plate Sect. Inductor 40318 19 PR 17 megohm ± 10% ½ wath 19 Channel 2 6802A Plate Sect. Inductor 40319 19 RT 1000 ohms ± 10% ½ wath 19 S2 Front Converter Grid Sect. Inductor 40318 19 E11 RG 1000 ohms ± 10% ½ wath 19 Channel 2 Converter Grid Sect. Inductor 40310 19 B11 RR 1000 ohms ± 10% ½ wath 19 Channel 2 Converter Grid Sect. Inductor 40320 19 B11 RR 100 Mm ± 10% ½ wath 19 Channel 2 Converter Grid Sect. Inductor 40320 19 B11 RR IN ohm ± 10% ½ wath 19 Channel 2 Converter Grid Sect. Inductor | 120 | | | 6. | 53 | | 300 131314 | | | | | Channel & StagZA Plate Set. Inductor 40310 19 87 81 820 ohms | L21 | Channel 5 68Q7A Plate Sect. Inductor | 40302 | 2 5 | 60 | | | | | | | Channel 5 084/A Pirate Sert. Inductor
4031 9 09 | 122 | Channel 4 684/A Plate Sect. Inductor | 40303 | <u> </u> | 60 | L | + 10% 3 | watt | 19 | E5 | | Converter Grid Section Segment 40310 19 19 19 19 19 19 19 | 123 | Channel 3 63U/A Plate Sect. Inductor | 40317 | 20 | 600 | R2 | + 10% → | watt | 19 | E7 | | State Converter Grid Section Inductor 40317 19 E11 R5 1 megohm ± 10% ½ worth 19 R6 100 k ohms ± 10% ½ worth 19 R7 10 k ohm ± 10% ½ worth 19 R8 10 k ohm ± 10% ½ worth 19 R8 10 k ohm ± 10% ½ worth 19 R8 10 k ohm ± 10% ½ worth 19 R8 10 k ohm ± 10% ½ worth 19 R8 10 k ohm ± 10% ½ worth 19 R8 10 k ohm ± 10% ½ worth 19 R8 10 k ohm ± 10% ½ worth 19 R8 10 k ohm ± 10% ½ worth 19 R8 10 k ohm ± 10% ½ worth 19 R8 10 k ohm ± 10% ½ worth 19 R8 10 k ohm ± 10% ½ worth 19 R8 10 k ohm ± 10% ½ worth 19 R8 10 k ohm ± 10% ½ worth 19 R8 10 k ohm ± 10% ½ worth 19 R8 10 k ohm ± 10% ½ worth 19 R8 10 k ohm ± 10% ½ worth 19 R8 10 k ohm ± 10% ½ worth | 124 | Channel 2 obg/A Plate Sect. Inductor | 40318 | - 0 | 2 | R3 | ± 10% ₹ | watt | 19 | E8 | | Solution Section Segment 19 19 19 19 19 19 19 1 | 577 | | 40319 | 10 | EI1 | R4 | ∓ 10% | watt | 19 | 82 | | S2 Front | (201 | _ | | 16 | Ξ | RS | + 10% | watt | 61 | 65 | | Channel 5 Converter Grid Sect. Inductor 40188 19 C11 R8 11 K ohm ± 10% ± warth 19 C11 R8 11K ohm ± 10% ± warth 19 C11 R8 11K ohm ± 10% ± warth 19 C11 R8 11K ohm ± 10% ± warth 19 Channel 5 Converter Grid Sect. Inductor 40320 19 B11 R10 120 ohms ± 10% ± warth 19 Channel 2 Converter Grid Sect. Inductor 40321 19 C10 R12 100K ohms ± 10% ± warth 19 Channel 1 Converter Grid Sect. Inductor 40321 19 C10 R12 100K ohms ± 10% ± warth 19 Channel 1 Converter Grid Sect. Inductor 40312 19 C10 R13 100K ohms ± 10% ± warth 19 Channel 2 Converter Grid Sect. Inductor 40312 19 E11 R14 15K ohms ± 10% ± warth 19 C12 R15 Channel 9 Oscillator Sect. Inductor 40310 19 C12 R105 15K ohms ± 10% ± warth 19 C12 R105 15K ohms ± 10% ± warth 19 C12 R105 15K ohms ± 10% ± warth 19 C12 R105 15K ohms ± 10% ± warth 19 C12 R105 15K ohms ± 10% ± warth 10 C12 R105 15K ohms ± 10% ± warth | 771 | S? Front | | 16 | 110 | R6 | # 10%
| watt | 6. | 2 5 | | Channel 5 Converter Grid Sect. Inductor 40301 19 CTI R8 IK ohm ± 10% ± wart 19 Channel 4 Converter Grid Sect. Inductor 40170 19 B11 R10 120 ohms ± 10% ± wart 19 Channel 2 Converter Grid Sect. Inductor 40320 19 B10 R11 3.3K ohms ± 10% ± wart 19 Channel 2 Converter Grid Sect. Inductor 40321 19 CTO R13 100K ohms ± 10% ± wart 19 Channel 2 Converter Grid Sect. Inductor 4037 19 E11 R14 15K ohms ± 10% ± wart 19 Oscillator Filoment Choke 4031 19 E11 R15 100K ohms ± 10% ± wart 19 Oscillator Sect. Inductor 40310 19 D11 R16 5 K ohms ± 10% ± wart 21 Channel 9 Oscillator Sect. Inductor 40310 19 D12 R10 E Wort ± Wart 21 Channel 5 Oscillator Sect. Inductor < | 120 | r Grid Section | 40168 | 61 | 110 | R7 | # 10%
10% | watt | 5 | 62 | | Channel 5 Converter Grid Sect. Inductor 40301 19 B11 KF9 I/K offine ± 10% ½ wart 19 Channel 4 Converter Grid Sect. Segment 40170 19 B11 R11 3.3K ohms ± 10% ½ wart 19 Channel 2 Converter Grid Sect. Inductor 40320 19 C10 R13 100K ohms ± 10% ½ wart 19 Channel 2 Converter Grid Sect. Inductor 40322 19 D10 R13 100K ohms ± 10% ½ wart 19 Oscillator Filoment Choke 40313 19 E11 R15 50K ohms ± 10% ½ wart 19 Oscillator Sect. Inductor 40310 19 D12 R105 ½ wart 19 C12 R106 ½ wart 21 Channel 9 Oscillator Sect. Inductor 40310 19 C12 R106 ½ wart 21 Channel 9 Oscillator Sect. Inductor 40316 19 C12 R106 ½ wart 21 Channel 4 Oscillator Sect. Inductor 40306 19 </td <td>130</td> <td></td> <td></td> <td>19</td> <td>5</td> <td>88</td> <td>%0F H</td> <td>watt</td> <td>20</td> <td>11 a</td> | 130 | | | 19 | 5 | 88 | %0F H | watt | 20 | 11 a | | Channel 4 Converter Grid Sect. Segment 40170 19 B11 K10 120 onlins 10% ½ worth 19 Channel 2 Converter Grid Sect. Inductor 40320 19 C10 K12 100K ohms 10% ½ worth 19 Channel 2 Converter Grid Sect. Inductor 40321 19 C10 K13 100K ohms 10% ½ worth 19 Channel 1 Converter Grid Sect. Inductor 40322 19 C10 K13 100K ohms 10% ½ worth 19 C10 K13 100K ohms 10% ½ worth 19 C12 K10 | 131 | Channel 5 Converter Grid Sect. Inductor | 40301 | 19 | 118 | 62.0 | %0LH | Walt | | 513 | | Channel 3 Converter Grid Sect. Inductor 40320 19 BIO R11 3.3A Offins 10% ½ wait 19 Channel 2 Converter Grid Sect. Inductor 40322 19 E11 R13 100K ohms ± 10% ½ wait 19 Channel 2 Converter Grid Sect. Inductor 40107 19 E11 R14 15K ohms ± 10% ½ wait 19 Oscillator Filoment Choke 40313 19 E12 R15 100K ohms ± 10% ½ wait 19 Channel 9 Oscillator Sect. Inductor 40310 19 D11 R10 8 wait 10% ½ wait 19 Channel 9 Oscillator Sect. Inductor 40316 19 C12 R102 15K ohms ± 10% ½ wait 21 Channel 5 Oscillator Sect. Inductor 4036 19 E12 R104 1K ohms ± 10% ½ wait 21 Channel 3 Oscillator Sect. Inductor 4030 19 E12 R104 1K ohms ± 10% ½ wait 21 Channel 3 Oscillator Se | 132 | Channel 4 Converter Grid Sect. Segment | 40170 | 19 | B11 | אני
מיני | 10% | wa!! | 01 | 35 | | Channel 2 Converter Grid Sect. Inductor 40321 19 CT0 R12 100 Notice 4 worth 19 Channel 2 Converter Grid Sect. Inductor 40322 19 D10 R14 15K ohms ± 5% ½ worth 19 Oscillator Filament Choke 40313 19 E11 R15 100K ohms ± 10% ½ worth 19 Channel 9 Oscillator Sect. Inductor 40310 19 D11 R10 82ohms ± 10% ½ worth 21 Channel 9 Oscillator Sect. Inductor 40167 19 C12 R10 15K ohms ± 10% ½ worth 21 Channel 5 Oscillator Sect. Inductor 40167 19 C12 R104 K ohms ± 10% ½ worth 21 Channel 2 Oscillator Sect. Inductor 40306 19 B12 R104 K ohms ± 10% ½ worth 21 Channel 3 Oscillator Sect. Inductor 40307 19 B12 R104 K ohms ± 5% | L33 | Channel 3 Converter Grid Sect. Inductor | 40320 | 19 | 810 | | + 10% | # # # # # # # # # # # # # # # # # # # | 10 | 110 | | Channel 9 Oscillator Sect. Inductor 40322 19 D10 R13 15K ohms ± 5% ± worth 19 E11 R15 Channel 9 Oscillator Sect. Inductor 40313 19 E12 R15 Channel 9 Oscillator Sect. Inductor 40310 19 C12 R105 Sek ohms ± 10% ± warth 19 C12 R105 Sek ohms ± 10% ± warth 19 C12 R105 Sek ohms ± 10% ± warth 21 Channel 9 Oscillator Sect. Inductor 40306 19 C12 R105 Sek ohms ± 10% ± warth 22 Channel 4 Oscillator Sect. Segment 40182 19 E12 R105 A7 ohms ± 10% ± warth 21 Channel 2 Oscillator Sect. Inductor 40307 19 E12 R105 A7 ohms ± 10% ± warth 22 Channel 2 Oscillator Sect. Inductor 40307 19 E12 R105 A7 ohms ± 10% ± warth 22 Channel 1 Oscillator Sect. Inductor 40307 19 E12 R105 A7 ohms ± 10% ± warth 22 Channel 1 Oscillator Sect. Inductor 40309 19 C12 R105 A7 ohms ± 10% ± warth 22 Channel 1 Oscillator Sect. Inductor 40309 19 C12 R105 A7 ohms ± 10% ± warth 22 Channel 1 Oscillator Sect. Inductor 40309 19 C12 R105 A7 ohms ± 10% ± warth 22 Channel 1 Oscillator Sect. Inductor 40309 19 C12 R105 A7 ohms ± 10% ± warth 22 Channel 1 Oscillator Sect. Inductor 40309 19 C12 R105 A7 ohms ± 10% ± warth 22 Channel | 134 | Channel 2 Converter Grid Sect. Inductor | 40321 | 6 ; | 013 | 217 | %OL + | t tow | 19 | E10 | | Oscillator Flament Choke 40107 19 E11 R15 100 kms ± 10% ± wart 19 Oscillator Section Inductor 40313 19 E12 R16 5 6K ohms ± 10% ± wart 19 Channel 9 Oscillator Sect. Inductor 40310 19 D12 R101 820hms ± 10% ± wart 21 Channel 2 Oscillator Sect. Inductor 40167 19 C12 R103 56K ohms ± 10% ± wart 21 Channel 4 Oscillator Sect. Inductor 40306 19 B12 R104 1K ohm ± 10% ± wart 21 Channel 2 Oscillator Sect. Inductor 40307 19 B12 R104 1K ohms ± 10% ± wart 21 Channel 2 Oscillator Sect. Inductor 40307 19 B12 R104 1K ohms ± 10% ± wart 21 Channel 2 Oscillator Sect. Inductor 40308 19 C12 R108 ± XK ohms ± 10% ± wart 21 Channel 2 Oscillator Sect. Inductor | 135 | Channel 1 Converter Grid Sect, Inductor | 40322 | 6 | 010 | 2 6 | % \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 100 | 19 | E12 | | Channel 9 Oscillator Sect. Inductor 40313 19 E12 R15 5 6 k ohms 10% ½ watt 19 21 R101 820hms ± 10% ½ watt 21 R101 820hms ± 10% ½ watt 21 R102 15 k ohms ± 10% ½ watt 21 R102 15 k ohms ± 10% ½ watt 21 R103 5 6 k ohms ± 10% ½ watt 21 R103 5 6 k ohms ± 10% ½ watt 21 R103 5 6 k ohms ± 10% ½ watt 21 R104 K ohms ± 10% ½ watt 21 R105 47 k ohms ± 10% ½ watt 21 R105 47 k ohms ± 10% ½ watt 21 R105 47 k ohms ± 10% ½ watt 21 R105 21 R105 21 R105 21 R105 21 R105 21 R105 | L36 | Oscillator Filament Choke | 40107 | 6 , | - i | 1 1 | %0[++ | 110% | 10 | F19 | | Channel 9 Oscillator Sect. Inductor 40310 19 D11 R101 820hms ± 10% ½ worth 21 Channel 9 Oscillator Sect. Inductor 40167 19 C12 R102 15K ohms ± 10% ½ worth 21 Channel 5 Oscillator Sect. Inductor 40306 19 B12 R104 1K ohms ± 10% ½ worth 20 Channel 3 Oscillator Sect. Inductor 40307 19 B12 R105 4.7K ohms ± 10% ½ worth 21 Channel 2 Oscillator Sect. Inductor 40307 19 B12 R105 4.7K ohms ± 5% ½ worth 21 Channel 1 Oscillator Sect. Inductor 40309 19 C12 R107 4.7K ohms ± 10% ½ worth 21 Channel 1 Oscillator Sect. Inductor 40309 19 C12 R108 4.7K ohms ± 5% ½ worth 21 Channel 1 Oscillator Sect. Inductor 40106 19 E9 R108 10K ohms ± 10% ½ worth 21 | L37 | Oscillator
Section Inductor | 40313 | 6. | E12 | C 2 C | %UL+ | #10W | 19 | 1 - | | Oscillator Section Segment | L38 | Channel 9 Oscillator Sect. Inductor | 40310 | 2 5 | - 2 | וסוק | %01
1+ | wott | 21 | 819 | | Channel 5 Oscillator Sect. Inductor 40306 19 812 R104 1K ohm ± 10% ½ wath 20 Channel 4 Oscillator Sect. Inductor 40306 19 812 R105 47 ohms ± 10% ½ wath 21 Channel 2 Oscillator Sect. Inductor 40307 19 812 R105 47 ohms ± 5% ½ wath 21 Channel 1 Oscillator Sect. Inductor 40309 19 C12 R106 4.7K ohms ± 5% ½ wath 21 Channel 1 Oscillator Sect. Inductor 40309 19 C12 R108 4.7K ohms ± 5% ½ wath 21 Channel 1 Oscillator Sect. Inductor 40309 19 C12 R108 4.7K ohms ± 10% ½ wath 21 Channel 1 Oscillator Sect. Inductor 40309 19 C12 R108 4.7K ohms ± 10% ½ wath 21 Channel 1 Oscillator Sect. Inductor 40309 19 C12 R108 4.7K ohms ± 10% ½ wath 21 Channel Oscillator Sect. Inductor 40309 19 C12 R108 4.7K ohms ± 10% ½ wath 21 Channel Ch | L39) | | 17707 | 2 5 | 212 | 2019 | 10% | watts | 21 | 04 | | Channel 5 Oscillator Sect. Inductor 40306 19 B12 R104 1K ohm ± 10% ½ watt 21 Channel 4 Oscillator Sect. Segment 40182 19 B12 R105 47 ohms ± 10% ½ watt 21 Channel 3 Oscillator Sect. Inductor 40307 19 B12 R106 4.7K ohms ± 10% ½ watt 21 Channel 1 Oscillator Sect. Inductor 40309 19 C12 R108 4.7K ohms ± 10% ½ watt 21 Channel 1 Oscillator Sect. Inductor 40309 19 C12 R108 4.7K ohms ± 5% ½ watt 21 Channel 1 Oscillator Sect. Inductor 40106 19 E9 R109 10K ohms ± 10% ½ watt 21 | L40 | Oscillator Section Segment | 40104 | 0 | 300 | R103 | + 10% | watt | 20 | RS | | Channel 4 Oscillator Sect. Segment 40182 19 B12 R105 47 ohms ± 10% ½ watt 21 Channel 3 Oscillator Sect. Inductor 40307 19 B12 R106 4.7K ohms ± 5% ½ watt 21 Channel 2 Oscillator Sect. Inductor 40308 19 C12 R107 4.7K ohms ± 10% ½ watt 21 Channel 1 Oscillator Sect. Inductor 40309 19 C12 R108 4.7K ohms ± 5% ½ watt 21 Channel 1 Oscillator Sect. Inductor 40106 19 E9 R109 10K ohms ± 10% ½ watt 21 | 141 | Channel 5 Oscillator Sect. Inductor | 40306 | 6 | B12 | R104 | + 10% + | watt | 21 | 116 | | Channel 3 Oscillator Sect. Inductor 40307 19 B12 R106 4.7K ohms ± 5% ½ watt 21 Channel 2 Oscillator Sect. Inductor 40309 19 C12 R108 4.7K ohms ± 10% ½ watt 21 Channel 1 Oscillator Sect. Inductor 40309 19 C12 R108 4.7K ohms ± 5% ½ watt 21 Channel 1 Oscillator Sect. Inductor 40106 19 E9 R109 10K ohms ± 10% ½ watt 21 C12 R108 10K ohms ± 10% ½ watt 21 C12 R109 10K ohms ± 10% Å watt 21 C12 R109 10K ohms ± 10% Å watt 21 C12 R109 10K ohms ± 10% Å watt 21 C12 R109 10K ohms ± 10% Å watt | 1.42 | Channel 4 Oscillator Sect. Seament | 40182 | 16 | 812 | R105 | + 10% - | watt | 21 | T15 | | Channel 2 Oscillator Sect. Inductor 40308 19 C12 R107 47K ohms ± 10% ½ watt 21 Channel I Oscillator Sect. Inductor 40309 19 C12 R108 4.7K ohms ± 5% ½ watt 21 6BQ7A Filament Choke 40106 19 E9 R109 10K ohms ± 10% ½ watt 21 | 144 | Channel 3 Oscillator Sect. Inductor | 40307 | 19 | B12 | R106 | + 2%
+ | watt | 21 | T14 | | Channel I Oscillator Sect. Inductor 40309 19 C12 R108 4.7K ohms \pm 5% $\frac{1}{2}$ watt 21 6BQ7A Filament Choke 40106 19 E9 R109 10K ohms \pm 10% $\frac{1}{2}$ watt 21 | 145 | Channel 2 Oscillator Sect. Inductor | 40308 | 19 | C12 | R107 | ∓ 10% ∓ | watt | 21 | T15 | | 68Q7A Filament Choke 40106 19 E9 R109 10K ohms ± 10% ½ watt 21 | 1.46 | Channel I Oscillator Sect. Inductor | 40309 | 19 | C12 | R108 | + 5% | watt | 21 | 015 | | | 147 | 6BQ7A Filament Choke | 40106 | 19 | E9 | R109 | +1 | watt | 21 | D4 | | 40. LOCATION | | R13
Q12 | V14 | V15 | R14 | Š- | 2 2 | 00 | 80 | 18 | P12 | P13 | 012 | 100 | 200 | W | F19 | 620 | 620 | E19 | D17 | C17 | (A) | 5 8 | D16 | E15 | E15, D13 | D15 | H17 | 55 | 515 | F14 | . 96 | 77 | F16 | 610 | F10 | 7.5 | E6 | 67 | סנם | |-------------------|-----------------------|------------------------|-------------------------|-----------|-----------|--------------|---------------------------------|-----------|------------------|----------|-----------|------------|------------------|-----------|-----------|-----------|-----------|--------------|-----------------------|-----------|------------------|------------|--------------|------------|-----------|--------------|-----------|----------------|-------------|-----------|------------|-----------------------|--------------|------------|-----------|-------------|------------|-------------|-----------|-----------|--------| | FIG. No. | | 222 | 2 2 | 21 | 2 2 | 7 6 | 46 | 20 | 21 | 21 | 21 | 2 | 7 6 | 2 5 | 2 1 0 | 10 | 21 | 21 | 21 | 21 | 21 | 7 . | 7 6 | 20 | 21 | 21 | 21 | 2 | 2 | 7 6 | 46 | 21 | 21 | 21 | 21 | 21 | 22 | 20 | 21 | 21 | 2.1 | | PART No. | | | 40351/1 | | | | | | | | | | | | | | | | | | | 40353 | 40347 | 10001 | | | | | 2200 | 40333 | | | | | | | | | | | | | | | watt watt | IDW & | 3 watt | * wat | 2 Wall | 2 × va+ | twatt | 2 watt | 2 watt | 3 watt | -n- | - m | 1 Wat | N - | N - E | 2 watt | - | - | 2 watt | -01 | 9 | ž WūTI | -5 | 4 watt | -101 | 7 | -K4 - | 4 watt | - | - | 2 watt | -¦N | - 14 | | 2 watt | * watt | wa't | 1 watt | 1 watt | 1 1000 | | DESCRIPTION | RESISTORS (continued) | 11 11 19% | A.G.C. | + 10% | %%
10% | %
H H | %
-
-
-
-
-
- | 10% | %0L H | + 10% | + 10% | %0.
H | %
10%
+ 1+ | 1+ | %
1+ | %0L
 + | *01
+ | %01 ∓ | ₩ 10% | + 10% | + 10% | Vert. Hold | Hei ht | %0L + | + 10% | %01 + | + 2% | # 10% | %01
H | + 10% | %0L
 + | 10% | *01 + | + 10% | #10 % | # 10% | %%
+ 1+ | .%01
- + | %01
 + | # 10% | 700L + | | 8 | RESISTO | 47K ohms
56K ohms | 500K ohms | 470K ohms | 12K ohms | A 7K ohms | 15K ohms | 470K ohms | 2.2 megohms | 22K ohms | 270K ohms | 22K ohms | 27K ohms | 680K ohms | 2 7K ohms | 1 megohm | 2.7K ohms | 8.2K ohms | 27K ohms | 2.7K ohms | 1 megohm | megohm | 2 5 menohms | 150K chrns | 330K ohms | 3.9K ohms | 44K ohms | 220K ohms | 2.2 megohms | 470 ohms | 470 ohms | 27K ohms | 3.3K ohms | 15K ohms | 150 ohms | 150K ohms | 330K ohms | 220K ohms | 68K ohms | 3.9K ohms | 1001 | | CODE No. | | R305
R306 | K308 | R309 | R310 | K3 - | K312 | R314 | R315 | R316 | R317 | R318 | R319 | K320 | K321 | K322 | R323 | R325 | R326 | R327 | R328 | R329 | R330 | P33- | R333 | R334 | R335 | R336 | R337 | R338 | K339 | K340 | R342 | R343 | R344 | R401 | R402 | R403 | R405 | R406 | 200 | | FIG. No. LOCATION | | D17
C17 | 08
C13 | E7 | F7 | F6 | H7 | K15 | 78 | K16 | 717 | 35 | 000 | 118 | 119 | 120 | N18 | M18 | 8 Z | S 2 | 05 | 000 | 115 | M16 | 910 | R18 | P15 | N 5 | 4 6 | 012 | 110 | N12 | = | Z S | 2 2 | 200 | M14 | R16 | R14 | 116 | CLC | | FIG. No. | | 20 | 20 | 21 | 21 | 21 | 21 | 21 | 20 | 21 | 7 5 | 10 | 2 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 20 | 16 | 21 | 21 | 21 | 21 | 21 | 7 6 | 7 6 | 21 | 20 | 21 | 23 | 7 5 | 7 5 | 7 5 | 1 6 | 21 | 21 | 21 | | | PART No. | | 40350 | 40351/2 | | | | | | T201) | | | | | | | | | | | 1001 | (502) | | | | | | | | | | 40354 | | | | | 40050 | 40332 | | | | | | | c . | | ž watt | ½ watt | 3 watt | 5 watts | 3 watts | 3 watt | 3 watt (in T201) | 2 watt | 2 watt | 2 woll | woth worth | watt | 2 watt | ½ watt | 3 watt | 2 watt | 2 watt | 2 watt | 2 watt (in 1205) | 2 watte | 10 watts | 1 watt | ½ watt | 2 watt | watt | 2 wall | y watt | 1 watt | | 2 watt | 2 watt | 2 watt | 1 WOT | a wall | 1 woth | 1 watt | 1 watt | 2 watt | 1 | | DESCRIFTION | S (continued) | Volume
Brightness | Tone | + 10% | 700 ∓ | | | + 10% | + 2% | 12% | %%
10% | %
- + | 1+ | + 10% | + 5% | + 5% | ÷ 10% | ÷ 10% | %
2
4
1
1 | % % O | +I + | %0L
++ | %0L
 + | ÷ 10% | + 2% | %01
+I+ | %%
H + | | | 10% | Contrast | %01 + (803 | %%
10% | %01
H H | %%
10% | 0 10 0 | + 10% | 1+1 | + 5% | 1 2% | 100 | | Ö | RESISTORS | 500K ohms
200K ohms | 10 megohms
500K ohms | 330K ohms | 47K ohms | 250 chms W.W | 325 ohms W.W. | 1K ohm | 4.7K ohms | 100 ohms | TK ohm | E 41' shme | 68 ohms | 1.5K chms | 12K ohms | 68 ohms | 1K ohm | 10 ohms | 1.5K ohms | 180 ohms | 4./K ohms | 10K ohms | 4K ohms W.W. | 33K ohms | 3.9K ohms | 1 megohm | 33 ohms | 4 75V ohms W W | 22K ohms | 3.3K ohms | 15K ohms C | 22K ohms (in La | 1K ohm | 330K ohms | 270K ohms | 2 F monthme | 150 ohms | 2.4 megohms | 270K ohms | 47K ohms | 1001 | | CODE No. | | R110A
R110B | R111 | R113 | R114 | R115 | R116 | R201 | R202 | R203 | R204 | K203 | R207 | R208 | R209 | R210 | P.211 | R212 | R213 | R214 | R215 | 7160 | R218 | R219 | R220 | R221 | R222 | R223 | K224 |
R226 | R227 | R228 | R229 | R230 | K231 | K232 | K233 | R301 | R302 | R303 | 2000 | | CODE No. | DESCRIPTION | PART No. | FIG. No. LOCATION | CODE No. | DESCRIPTION PART No. | 3 | FIG. No. LO | LOCATION | |----------|--|----------|-------------------|----------|--|---|-------------|---------------| | | RESISTORS (continued) | | | | CAPACITORS (continued) | | | | | R408 | + 10% | | | C102 | F Ceramic + 100% — (| | 21 | T19 | | R409 | 1 megohm = 10% 3 watt | | 21 V9 | C103 | 39 pF Ceramic ± 10% N200 (in T101)
47 nF Ceramic ± 10% N220 (in T101) | | 20 | S S | | R410 | WW + 10% | | | C105 | F Ceramic + 100% (| | 21 | 117 | | R412 | 10% | | | C106 | pF 500V Mica ± 5% (in T102) | | 20 | 07 | | R413 | ± 10% 2 | | | C107 | 470 pF 500V Mica ± 5% | | 121 | 217 | | R414 | 7 %07 | t. box) | | 8000 | 10 JE 65 P V electrolytic | | 17 | 114 | | R415 | 10% 3 | | | 013 | UF 600 | | 21 | 910 | | R416 | ± 10% ± | | | 1110 | 0.047 uF 200V working ± 10% | | 21 | 716 | | R417 | 1K ohm (in yoke) ± 10% ½ watt | | 713 | C112 | 0.022 uF 200V working ± 10% | | 21 | D2 | | | 000 | | | 2.5 | 220 pF Ceramic ± 10% N750 | | 212 | 02 | | | CAPACITORS | | | 51.15 | | | 21 | E7 | | 5 | 18 nF Tubular + 5% NPO | | 10 64 | C116 | 100 pr 1000v Working mica ± 10% | | | 5 Z | | 58 | 0 | | 19 F5 | C118A | 20 of 40 f.v. electrolytic | | 20 | 26 | | ខ | NPO | | 19 F6 | C118B | | | 20 | F9 | | C4 | 470 pF Disc + 100% - 0% K5000 | | 19 E5 | C118C | + | | 20 | 6 5 | | 3 5 | 0 - %00 | | 19 E6 | 6119 | 0.0022 or paper occy working = 10% 931194 | | 21 | H15 | | 25 | 270 pF Tubular ± 20% K1200 | | 19 E7 | C202 | nic ± 5% NPO | | 21 | J14 | | 8 | | | 19 E7 | C203 | F Ceramic ± 5 | | 21 | H14 | | 6) | 6.8 pr Iubular H 5% NPO | | 6 E | C204 | | | 77 | 417 | | 000 | | 231123 | 19 E7 | C205 | 33 of Ceramic + 100% 0% | | 20 | C 87 | | C12 | 0% K5000 | | 19 E8 | C207 | 0.0047 uF Ceramic + 100% 0% | | 21 | H17 | | C13 | . — 0% K5000 | | 19 E9 | C208 | + 100% - 0% | | 21 | K17 | | C14 | | 231122 | 19 E9 | C209 | ٦, ۱ | | 21 | K18 | | C15 | 50 - 140 of Trimmer Mica | 40038 | 19 E10 | (210 | 0.0047 iiF Ceramic + 100% 0% | | 27 | X20 | | C12 | 0 | | 19 D10 | (212 | Ceramic + 100% - 09 | | 21 | 118 | | C18 | 0.001 uF Feed Thru + 100% - 0% K5000 | | 19 E10 | C213 | uF Ceramic + 100% — (| | 21 | 617 | | C19 | 00% — 0% K5000 | 001100 | 010 61 | C214 | ٠, د | | 12 | MZD | | 220 | 270 pF Tubular ± 20% K1200 | 27116 | 19 E9 | 2215 | 0.001 uf Ceramic + 100% - 0% | | 21 | 0 6
Z
Z | | (22 | 0.88 pF Bead ± 20% NPO | | 19 811 | C217 | 1 | | 21 | 020 | | C23 | 82 pF Style "C" Disc ± 10% N750 | | 19 E12 | C218 | | | 21 | 810 | | C24 | | | 19
10 | C219 | ic. | | 21 | P20 | | C25 | 12 of Tubular + 5% N750 | | 19 F12 | (220 | 4.7 pF Ceramic ± .5 pF N750 (in T205) | | 20 | 05
818 | | 222 | | 231122 | 19 F11 | (222 | 1 + 5 | | 21 | P16 | | C28 | NPO | | 19 E11 | C223 | ceramic ± 10% N750 | | 21 | 919 | | C29 | W.A. Special | 40135 | 19 E13 | C224 | 0 0047 uF ceramic + 100% 0% (in T206) | | 20 | P5 | | 85 | 470 pr Disc + 100% — 0% K3000
470 pr Disc + 100% — 0% K5000 | | 200 | C225 | 39 pt ceramic ±5% N750
0.018 uF 400V working ± 10% | | 27 | P16 | | C101 | Ceramic + 100% — C | | 21 818 | C227A | 450 P.V. electrolytic | | 50 | 8 | | | | | | | | | | | | LOCATION | Q8
111
111
118
118
118
118
118
118
119
119 | 82 | 010 | |-------------|---|---|---| | FIG. No. | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | 20 | 20 | | PART No. | 1) = 20% = 10% N750 40156 40325 40077 40077 40071 40077 40067 40067 40067 40067 40067 40067 40067 21045 21034 21529 | | | | DESCRIPTION | CAPACITORS (continued) 270 pF 1000V working mica ± 205 68 pF 2500V working earamic ± 109 91 pF 4000V Test rearamic (in Yoke) 90 uF 525 p.V. electrolytic TRANSFORMERS Aerial Matching Transformer Converter I.F. Sound I.F. 1st Video I.F. 2nd Video I.F. 3rd Video I.F. 3rd Video I.F. 3rd Video I.F. Sound Teke Off Vertical Oscillator Vertical Oscillator Vertical Oscillator Nertical Oscillator Nertical Objecting Oscillator Horizontal Blocking Oscillator Horizontal Output Power Transformer SWITCHES Channel Selector " " " Power-Volume (on R110A) LOUDSPEAKERS 7 x 5 p.M. Table Model 9 x 6 p.M. Console Model 9 x 6 p.M. Console Model 9 x 6 p.M. Console Model | PILOT LAMP
6.3V, 0.35 amp. M.E.S. | FUSE
.375 amp. Cartridge | | CODE No. | C414
C415
C415
C416
C417
C417
T101
T102
T103
T203
T203
T204
T204
T204
T205
T206
T206
T206
T207
T207
T208
T208
T208
T208
T208
T208
T208
T208 | 17 | F401 | | LOCATION | L8
L8
M13
M13
M13
M14
M15
M15
M17
M18
M19
M19
M19
M19
M19
M19
M19
M19 | 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | R8 88 | | FIG. No. | 388888888888888888888888888888888888888 | 22222 | 2222 | | PART No. | 750 | 231127 | | | DESCRIPTION | CAPACITORS (continued) 5 of 600 P.V. electrolytic 25 of 450 P.V. electrolytic 12 pf. ceramic ±5% N750 47 pf. ceramic ±5% N750 60.22 uf 400 V. vorking ± 20% 82 pf. ceramic N750 60.47 uf 200V working ± 20% 60.01 uf 400 P.V. electrolytic 60.47 uf 200V working ± 20% 60.01 uf 400V working ± 20% 60.01 uf 400V working ± 20% 60.013 uf 600V working ± 10% 60.022 uf 600V working ± 10% 60.004 60.01 uf 400V working ± 20% 60.02 uf 400V working ± 20% 60.047 uf 600V working ± 20% 60.047 uf 600V working ± 20% 60.047 uf 400V 200V working ± 20% 60.047 uf 400V working ± 20% 60.047 uf 600V 60.040 uf 600V working ± 20% 60.040 uf 600V working ± 20% 60.050 | | 0.1 uF 600V working ± 20%
0.047 uF 1000V working ± 10%
0.047 uF 1000V working ± 10% | | CODE No. | C2278
C2276
C2277
C228
C228
C228
C230
C230
C300
C300
C300
C301
C301
C301
C301
C3 | C408
C407
C409 | C411
C412
C413 | # CIRCUIT A.W.A. TELEVISION RECEIVER MODELS 201-T, 202-C & 203-T In some chassis, R234, C232 were omitted. In some chassis, a 0.1 uF 400V paper capacitor was connected between tags, 1 and 6 on the tuner terminal panel. In some chassis, R329 was a 1.5 megohm potentiometer. In some chassis, R344 was omitted.