PHILIPS RADIOPLAYER

MODELS 177C-D-E

NOTE: The differences between Models 177C and 177D are a change in I.F. transformers. Refer to "Coils" list and circuit diagram drawing for details.
The difference between Models 177D and 177E is in the type of record changer used; refer to "Specifications" and "Capacitors' list (C44) for details.

SPECIFICATIONS
 (Subject to alteration without notice)

Power Supply	200-250V, $40-50 \mathrm{c} / \mathrm{s}$.
Tuning Ranges	$530-1620 \mathrm{kc} / \mathrm{s}$. 4.7-9.2 Mc/s. 9.1-18.4 Mc/s
Intermediate Frequency			$455 \mathrm{kc} / \mathrm{s}$.
Cabinet	Radiogram
Record Changer, 177C-D 177E	\cdots	\cdots	Philips type AG1000 Philips type AGI003

VALVE EQUIPMENT AND VOLTAGE ANALYSIS

Valve Function	Valve No.	Valve Type	Plate Volts	Screen Volts	Osc. P. Volts	Cathode Volts
Frequency Converter	V1	6AN7	235	65	55	-
I.F. Amplifier	V2	6BH5	235	65		-
Demodulator, A.V.C. and 1st Audio	V3	6BD7	60			-
2nd Audio Amplifier	V4	6BH5	115			26
Phase Splitter	V5	$6 \mathrm{BD7}$	180			40
Push-Pull Power Amplifier	V6	6M5	265	235		7.5
Push-Pull Power Amplifier	V7	$6 \mathrm{M5}$	265	235		7.5
Rectifier	V8	6 V 4		de to L	C.T. $=$	
Dial (2) and Bezel Lamps	V11, 1213		6.3 V	2A tubu	crew	
Voltage across R21, 5V; R1 6, 9V; R32, -2.3V						

NOTE: These voltages are measured with an " 1,000 ohms per volt" meter and may vary $\pm 10 \%$ from the figures quoted. They are measured from the socket points indicated to chassis, or across the resistors listed. The receiver should be in a "no signal" condition.

Published by
PHILIPS ELECTRICAL INDUSTRIES PTY. LTD. SYDNEY - MELBOURNE - BRISBANE - ADELAIDE - PERTH

MISCELLANEOUS COMPONENTS

No. on Dial Cord Layout Drawing

6

- Assembly, lampholder, ix
- Assembly, lampholder (bezel)

3 Assembly, tuning spindle

- Badge, Philips
- Bank, W/C switch (aerial)
- Bank, W/C switch (osee.)
- Bezel

Clip, spring (knob). $4 x$
Clip, spring (I.F.T. mtg.), $2 x$

Code No.

CR. 480.664

C/F733-5-4
CZ. 367.920

CR.371. 223

CR.531.408
CZ. 200.060
CZ.200.061
CS. 430.023
CS. 281.832
A3.652.58
Cord, dial drive 69' of cord required

Drum, dial

No. on Dial Cord

Layout Drawing

- Knob, control, Ax

CR.523.714

- Plug, male (gramo. unit power) CZ.365.115
- Plug, 2-pin polarised (speaker and pick-up)

C/F691-5-1
5 Pulley, dial (large)
CS.359.613
CS.359.612
CS. 412.395

- Socket, female (gramo. unit power)

CZ.365.116

- Socket, 2-pin polarised (speaker and pick-up)

C/F733-16-1

- Socket, valve (noval), $8 x$

C/F733-2-14

7 Spring, cursor
CS.212.016
8 Spring, dial cord
Code No.

2 Pulley, dial (small), Rx

CS. 210.043

PARTS LIST

CAPACITORS

No.	Description	Code No.
$\mathrm{Cl}_{24,10,11}$		
$\begin{array}{r} C 2,3,5 \\ 15,16 \end{array}$	30 pF air trimmer	CZ.113.700
C4	115 pF mica $2 \frac{1}{2} \%$	CZ.066.138
C6, 7	2 gang tuning	CZ.107.746
C8, 9	180 pF mica 1%	CZ.065.722
Cl 2	475 pF mica 2\%	CZ.066.119
Cl 3	60 pF air trimmer	49.005 .58
C14	110 pF mica $2 \frac{1}{2} \%$	CZ.066.140
C17	0.0045 mF mica	$\stackrel{\%}{C Z .068 .102}$
C18, 26	0.05 mF 200 V pap	
C19	0.05 mF 400 V pape	
$\begin{array}{r} \mathrm{C} 20,21 \\ 22,23 \end{array}$	Part of I.F. transform	
C27, 30	0.002 mF 600 V pap	
C28	30 pF mica	
C29	0.02 mF 400 V pape	
C31	$0.001 \mathrm{mF} \mathrm{400V}$ pap	
C32, 33, 35	0.01 mF 400 V pape	
C34	0.1 mF 400V paper	
C36, 37	0.01 mF 600 V pape	
C38	25 mF 10 V electroly	
C39,40	0.005 mF 600 V pap	
C41	50 mF 6 V non-pola electrolytic	$\begin{aligned} & \text { ised } \\ & \text { CZ.099.870 } \end{aligned}$
C42, 43	$40 \mathrm{mF} \mathrm{350V}$ electr	lytic
C44 (177C-D) 0.01 mF 600 V paper		
C44 (177E)	0.005 mF 600 V	aper

All tolerances are $\pm 20 \%$ unless otherwise specified.

RESISTORS

No.	Description Code No.
R1	100 ohms $\frac{1}{2} \mathrm{~W}$ carbon
R2	22,000 ohms $\frac{1}{2} W \mathrm{~W}$ carbon
R3	47,000 ohms IW carbon 10\%
R4	68,000 ohms 1W carbon
R5, 33	47,000 ohms $\frac{1}{2} \mathrm{~W}$ carbon
R6, 17	10,000 ohms $\frac{1}{2} \mathrm{~W}$ carbon 10%
R7	0.5 megohm carbon potentiometer tapped at 40,000 ohms with \qquad

10 megohm $\frac{1}{2} W$ carbon
R9, $10 \quad 2.2$ megohm $\frac{1}{2} W$ carbon
R11, 14, 19 68,000 ohms $\frac{1}{2} W$ carbon 10%
R12 150,000 ohms $\frac{1}{2} \mathrm{~W}$ carbon 10%
RI3 0.5 megohm carbon potentiometer tapped at 0.25 megohm CZ.029.150

R15, $20 \quad 1$ megohm $\frac{1}{2}$ W carbon
R16 5,600 ohms $\frac{1}{2} \mathrm{~W}$ carbon 10%
R18, $29 \quad 100$ ohms $\frac{1}{2} \mathrm{~W}$ carbon 10%
R21
2,700 ohms carbon 10%
R22, 23
47,000 ohms $\frac{1}{2} \mathrm{~W}$ carbon 10%
R24, $25 \quad 4,700$ ohms $\frac{1}{2} W$ carbon
R26, 27
R28
R30, 31
R32
All tolerances are $\pm 20 \%$ unless otherwise specified.

COILS

No.	Ohms	Description	Code No.	No.	Ohms	Description	Code No.
LI	19.6-26.4	B/C aerial coil	CZ.323.026	$\left.\begin{array}{ll} \text { L1 } 11.5-15.5 \\ \text { (177C only) } \end{array}\right\}$		2nd I.F. transformer	CZ.320.434
L2	1.5-2.0						
					1.5-15.5		
L3	1.2-1.7	S/W aerial coil	CZ.323.027	$\left.\begin{array}{lr} \text { LI } 1 & 8.3-9.2 \\ \text { (177D-E only) } \end{array}\right\}$		2nd I.F. transformer	CZ.320.444
L4	<0.5						
L5	0.8-1.2	B/C oscillator coil	CZ.330.613	L12 4.7-5.2			
L6	2.7-3.7						type KOL53
L7	<0.5)	S/W oscillator coil	CZ.330.614	L14		Outbut transformer	
L8	<0.5						
				L15		Speaker	type 12M, F25
19	11.5-15.5 ${ }_{\text {conly }}$	1st I.F. transformer	A3.124.25	L16		Speaker	type 5CX, F95
	11.5-15.5			L17		Speaker	type 5CX, F95
L9	4.7-5.2)	1st I.F. transformer	A3.126.84	L18	315-425)	Power transformer	CZ.344.089
177	D-E only)			L19	$<0.5\}$		
L10	8.0-9.0			L20	26-36		

IMPORTANT! In ordering spare parts quote CODE NUMBER of part and MODEL NUMBER of Receiver. In claiming free replacement under
GUARANTEE, return defective part PROMPTLY and quote MODEL and SERIAL NUMBER of Receiver and DATE OF PURCHASE.

ALIGNMENT.

During alignment, set volume at maximum and tone control at central position. With the tuning capacitor fully closed, set the dial cursor on the 120 mark of the relocation scale.

I.F. ALIGNMENT.

Model 177C Only.

I.F. channel alignment is carried out in the following sequence:-

Connect 100 pF capacitor from plate of 6 BH 5 to chassis and peak secondary of 2nd I.F.T. (screw nearer 6BD7).

Transfer 100 pF capacitor to 6BD7 diode to chassis position and peak primary of 2nd I.F.T. (screw nearer 6BH5).

Remove the detuning capacitor and peak secondary of 1st I.F.T. (screw nearer 6BH5).

Peak primary of lst I.F.T. (screw nearer 6AN7).
Repeat operation on lst I.F.T. ONLY.

Model 177D-E only.

I.F. channel alignment is carried out in the following sequence:-

Screw out iron core of 2nd I.F.T. primary (nearer 6BH5) as far as possible. Adjust iron cores for maximum output in the following sequence-

Peak secondary of 2nd I.F.T. (nearer 6BD7).
Peak secondary of Ist I.F.T. (nearer 6BH5).
Peak primary of 1st I.F.T. (nearer 6AN7).
Peak primary of 2nd I.F.T. (nearer 6BH5).
Do not repeat any adjustments.

R.F. ALIGNMENT.

The trimmer layout drawing for models 177C-D-E is shown as an inset on the circuit diagram drawing.
B / C band alignment frequencies are: $1,420 \mathrm{kc} / \mathrm{s}$, $3 X Y$ (oscillator and aerial trimmers) and $600 \mathrm{kc} / \mathrm{s}$, 7ZL (slug padding with gang rocking).

On the short wave band the oscillator operates on a frequency above signal frequency, so that of the two
signals tunable on the receiver, the high frequency one is correct. In short wave alignment, SW2 band (4.7$9.2 \mathrm{Mc} / \mathrm{s}$) should be done first before attempting alignment of SWI band.

On SW2 band (4.7-9.2 Mc/s) alignment frequencies are: $4.825 \mathrm{Mc} / \mathrm{s}$ (113 on relocation scale), (oscillator coil slug) and $8.9 \mathrm{Mc} / \mathrm{s}$ (16 on relocation scale), (oscillator and aerial trimmers). Rock the tuning gang while adjusting the aerial trimmer.

SWI band (9.1-18.4 Mc/s) alignment frequency is $17.8 \mathrm{Mc} / \mathrm{s}$ (small green triangle), (oscillator and aerial trimmers, rock gang while adjusting aerial trimmer). Calibration should be checked at $9.65 \mathrm{Mc} / \mathrm{s}$ (small green triangle).

Do not attempt to adjust the iron cores of the aerial coils.

TO REMOVE CHASSIS FROM CABINET.

Remove the power plug from the mains outlet socket. Remove the four control knobs (a firm pull is all that is necessary). Remove the cabinet back. Remove the aerial and earth terminal panel and unclip the leads from the cabinet.

Remove the pick-up, speaker, gramo. unit power and bezel lamp plugs from their respective sockets. Remove the two screws at the top of the dial back plate and the two screws at the rear of the chassis. The chassis may now be withdrawn from the cabinet.

The replacement of the chassis is a reversal of the above procedure. Care should be taken to see that the front edge of the side chassis flange engages under the lip of the front mounting bracket.

MAINS VOLTAGE ADJUSTMENT.

The power transformer is provided with two mains voltage tapsings on the primary winding- $200 / 230$ volts and 240/250 volts-for adjustment to the supply voltage at the point of installation. The receiver is adjusted at the factory to the $240 / 250$ volts tapping.

DIAL CALIBRATION.

In the event of an equal calibration error over the entire dial scale, the dial cursor can be moved on the dial drive cord to correct the error.

